Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Using machine learning to produce near surface soil moisture estimates from deeper in situ records at U.S. Climate Reference Network (USCRN) locations: Analysis and applications to AMSR-E satellite validation
Using machine learning to produce near surface soil moisture estimates from deeper in situ records at U.S. Climate Reference Network (USCRN) locations: Analysis and applications to AMSR-E satellite validation
Using machine learning to produce near surface soil moisture estimates from deeper in situ records at U.S. Climate Reference Network (USCRN) locations: Analysis and applications to AMSR-E satellite validation
Coopersmith, Evan J. (Autor:in) / Cosh, Michael H. (Autor:in) / Bell, Jesse E. (Autor:in) / Boyles, Ryan (Autor:in)
Advances in water resources ; 98 ; 122-131
01.01.2016
10 pages
Aufsatz (Zeitschrift)
Englisch
DDC:
551.48
© Metadata Copyright the British Library Board and other contributors. All rights reserved.
British Library Online Contents | 2015
|British Library Online Contents | 2015
|SPECIAL ISSUE PAPERS - AMSR-E Instrument - Soil Moisture Retrieval From AMSR-E
Online Contents | 2003
|Does AMSR2 produce better soil moisture retrievals than AMSR-E over Australia?
Online Contents | 2017
|