Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Machine Learning Predictive Models for Pile Drivability: An Evaluation of Random Forest Regression and Multivariate Adaptive Regression Splines
Machine Learning Predictive Models for Pile Drivability: An Evaluation of Random Forest Regression and Multivariate Adaptive Regression Splines
Machine Learning Predictive Models for Pile Drivability: An Evaluation of Random Forest Regression and Multivariate Adaptive Regression Splines
Zhang, Wengang (Autor:in) / Wu, Chongzhi (Autor:in)
International Conference on Information Technology in Geo-Engineering ; 3. ; 2019 ; Guimarães
2020
Aufsatz (Konferenz)
Englisch
Taylor & Francis Verlag | 2021
|Probabilistic Evaluation of Liquefaction Potential Using Multivariate Adaptive Regression Splines
Springer Verlag | 2024
|Assessment of rockburst risk using multivariate adaptive regression splines and deep forest model
Springer Verlag | 2022
|