Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
EN:RICH - an AI-driven framework for neighborhood-level heating estimations based on multi-data source enriched CityGML models
EN:RICH - an AI-driven framework for neighborhood-level heating estimations based on multi-data source enriched CityGML models
EN:RICH - an AI-driven framework for neighborhood-level heating estimations based on multi-data source enriched CityGML models
Thiele, Christian-Dominik (Autor:in) / Shaker Verlag (Verlag) / Technische Universität Darmstadt (Grad-verleihende Institution)
2024
XI, 138, XV-LI Seiten
21 cm x 14.8 cm, 282 g
Illustrationen, Diagramme
Hochschulschrift
Englisch
Path to an Integrated Modelling between IFC and CityGML for Neighborhood Scale Modelling
DOAJ | 2017
|Springer Verlag | 2021
|Simulation of Electricity Demand in Non-residential Buildings Based on CityGML Data Models
Springer Verlag | 2023
|Simulation model generation combining IFC and CityGML data
TIBKAT | 2016
|