Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Planewaves, Pseudopotentials and the LAPW Method
Over the past decade the world's technological and industrial base has become increasingly dependent on advanced materials. There is every indication that this trend will accelerate and that progress in many areas will increasingly depend on the development of new materials and processing techniques. A second and equally significant trend is the continuing ascent of the information technologies, which now touch almost every aspect of life in some way. In this environment it is natural that there is a strong interest in using numerical modeling in materials science. With its extreme accuracy and reasonable computational efficiency, the linearized augmented plane wave (LAPW) method has emerged as the standard by which density functional calculations for transition metal and rare-earth containing materials are judged. Planewaves, Pseudopotentials and the LAPW Method presents a thorough and self-contained exposition of the LAPW method, making this powerful technique more accessible to researchers and students who have some familiarity with local density approximation calculations. Theory is discussed, but the emphasis is on how practical implementation proceeds. In addition, the author suggests future directions for adapting the LAPW method to simulations of complex materials requiring large unit cells. He does this by elucidating the connections between the LAPW method and planewave pseudopotential approaches and by showing how Car--Parrinello type algorithms can be adapted to the LAPW method. Planewaves, Pseudopotentials and the LAPW Method is a valuable resource for researchers already involved in electronic structure calculations, as well as for newcomers seeking quick mastery of the LAPW technique
Planewaves, Pseudopotentials and the LAPW Method
Over the past decade the world's technological and industrial base has become increasingly dependent on advanced materials. There is every indication that this trend will accelerate and that progress in many areas will increasingly depend on the development of new materials and processing techniques. A second and equally significant trend is the continuing ascent of the information technologies, which now touch almost every aspect of life in some way. In this environment it is natural that there is a strong interest in using numerical modeling in materials science. With its extreme accuracy and reasonable computational efficiency, the linearized augmented plane wave (LAPW) method has emerged as the standard by which density functional calculations for transition metal and rare-earth containing materials are judged. Planewaves, Pseudopotentials and the LAPW Method presents a thorough and self-contained exposition of the LAPW method, making this powerful technique more accessible to researchers and students who have some familiarity with local density approximation calculations. Theory is discussed, but the emphasis is on how practical implementation proceeds. In addition, the author suggests future directions for adapting the LAPW method to simulations of complex materials requiring large unit cells. He does this by elucidating the connections between the LAPW method and planewave pseudopotential approaches and by showing how Car--Parrinello type algorithms can be adapted to the LAPW method. Planewaves, Pseudopotentials and the LAPW Method is a valuable resource for researchers already involved in electronic structure calculations, as well as for newcomers seeking quick mastery of the LAPW technique
Planewaves, Pseudopotentials and the LAPW Method
Singh, David J. (Autor:in)
1994
Online-Ressource (XI, 115 p)
digital
Campusweiter Zugriff (Universität Hannover). - Vervielfältigungen (z.B. Kopien, Downloads) sind nur von einzelnen Kapiteln oder Seiten und nur zum eigenen wissenschaftlichen Gebrauch erlaubt. Keine Weitergabe an Dritte. Kein systematisches Downloaden durch Robots.
Buch
Elektronische Ressource
Englisch
DDC:
620.11
NOMAD dataset: Adaptively compressed exchange in LAPW
DataCite | 2022
|Nickel impurities in diamond: a FP-LAPW investigation
British Library Online Contents | 2004
|Structural and electronic properties of zirconia phases: A FP-LAPW investigations
British Library Online Contents | 2006
|Pseudopotentials for high-throughput DFT calculations
British Library Online Contents | 2014
|Pseudopotentials applied to stability of structures.
NTRS | 1967
|