Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Zur praktischen Anwendung numerischer Analysemethoden für Stabilitätsprobleme
In der täglichen Ingenieurpraxis werden in zunehmenden Maße numerische Analysen im Rahmen der Finite-Elemente-Methode auch zur Untersuchung stabilitätsgefährdeter Strukturen eingesetzt. Für die aktuelle Praxis, insbesondere im konstruktiven Stahlbau, ist jedoch festzustellen, dass zwischen der fortgeschrittenen Theorie und dem Niveau der praktischen Anwendung numerischer Stabilitätsanalysen eine große Kluft besteht. Aus praktischer Sicht erscheint es unumgänglich, die weiter wachsende Diskrepanz zwischen den umfangreichen theoretischen Möglichkeiten und der gegenwärtigen Praxis abzubauen. Damit steht der praktisch tätige Ingenieur vor der Aufgabe, sein Wissen auf dem Gebiet numerischer Stabilitätsanalysen zu vertiefen und bereits vorhandene FE-Programme um Berechnungsalgorithmen für umfassende numerische Stabilitätsanalysen zu erweitern. Dafür werden in der Arbeit die Grundlagen einer FEM- orientierten modernen Stabilitätstheorie einheitlich und aus Sicht einer praktischen Anwendung aufbereitet. Die Darstellung von realisierten programmtechnischen Umsetzungen für erweiterte Analysenmethoden wie Nachbeulanalysen, Pfadwechsel und Approximationen imperfekter Pfade ermöglicht eine Erweiterung des Methodenvorrates. Die innerhalb der Arbeit untersuchten Beispiele zeigen, dass durch die Anwendung der behandelten Verfahren das Tragverhalten einer stabilitätsgefährdeten Struktur wesentlich besser eingeschätzt werden kann als bei Beschränkung auf die herkömmlichen Analysemethoden.
Zur praktischen Anwendung numerischer Analysemethoden für Stabilitätsprobleme
In der täglichen Ingenieurpraxis werden in zunehmenden Maße numerische Analysen im Rahmen der Finite-Elemente-Methode auch zur Untersuchung stabilitätsgefährdeter Strukturen eingesetzt. Für die aktuelle Praxis, insbesondere im konstruktiven Stahlbau, ist jedoch festzustellen, dass zwischen der fortgeschrittenen Theorie und dem Niveau der praktischen Anwendung numerischer Stabilitätsanalysen eine große Kluft besteht. Aus praktischer Sicht erscheint es unumgänglich, die weiter wachsende Diskrepanz zwischen den umfangreichen theoretischen Möglichkeiten und der gegenwärtigen Praxis abzubauen. Damit steht der praktisch tätige Ingenieur vor der Aufgabe, sein Wissen auf dem Gebiet numerischer Stabilitätsanalysen zu vertiefen und bereits vorhandene FE-Programme um Berechnungsalgorithmen für umfassende numerische Stabilitätsanalysen zu erweitern. Dafür werden in der Arbeit die Grundlagen einer FEM- orientierten modernen Stabilitätstheorie einheitlich und aus Sicht einer praktischen Anwendung aufbereitet. Die Darstellung von realisierten programmtechnischen Umsetzungen für erweiterte Analysenmethoden wie Nachbeulanalysen, Pfadwechsel und Approximationen imperfekter Pfade ermöglicht eine Erweiterung des Methodenvorrates. Die innerhalb der Arbeit untersuchten Beispiele zeigen, dass durch die Anwendung der behandelten Verfahren das Tragverhalten einer stabilitätsgefährdeten Struktur wesentlich besser eingeschätzt werden kann als bei Beschränkung auf die herkömmlichen Analysemethoden.
Zur praktischen Anwendung numerischer Analysemethoden für Stabilitätsprobleme
The application of numerical methods to stability problems in practice
Lehmkuhl, Hansjörg (Autor:in) / Werner, Frank (Akademische:r Betreuer:in) / Bauhaus-Universität Weimar (Grad-verleihende Institution)
2005
1 Online-Ressource (224 Seiten)
Diagramme
Hochschulschrift
Elektronische Ressource
Deutsch
DDC:
624.170151825
BKL:
56.13
Stahlbau, Metallbau
/
50.31
Technische Mechanik
Zur praktischen Anwendung numerischer Analysemethoden für Stabilitätsprobleme
UB Braunschweig | 2005
|Springer Verlag | 1990
|Springer Verlag | 1996
|Springer Verlag | 1953
|Springer Verlag | 1994
|