Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Nanobubble Reactivity: Evaluating Hydroxyl Radical Generation (or Lack Thereof) under Ambient Conditions
Nanobubble (NB) generation of reactive oxygen species (ROS), especially hydroxyl radical (·OH), has been controversial. In this work, we extensively characterize NBs in solution, with a focus on ROS generation (as ·OH), through a number of methods including degradation of ·OH-specific target compounds, electron paramagnetic resonance (EPR), and a fluorescence-based indicator. Generated NBs exhibit consistent physical characteristics (size, surface potential, and concentration) when compared with previous studies. For conditions described, which are considered as high O2 NB concentrations, no degradation of benzoic acid (BA), a well-studied ·OH scavenger, was observed in the presence of NBs (over 24 h) and no EPR signal for ·OH was detected. While a positive fluorescence response was measured when using a fluorescence probe for ·OH, aminophenyl fluorescein (APF), we provide an alternate explanation for the result. Gas/liquid interfacial characterization indicates that the surface of a NB is proton-rich and capable of inducing acid-catalyzed hydrolysis of APF, which results in a false (positive) fluorescence response. Given these negative results, we conclude that NB-induced ·OH generation is minimal, if at all, for conditions evaluated.
Nanobubble Reactivity: Evaluating Hydroxyl Radical Generation (or Lack Thereof) under Ambient Conditions
Nanobubble (NB) generation of reactive oxygen species (ROS), especially hydroxyl radical (·OH), has been controversial. In this work, we extensively characterize NBs in solution, with a focus on ROS generation (as ·OH), through a number of methods including degradation of ·OH-specific target compounds, electron paramagnetic resonance (EPR), and a fluorescence-based indicator. Generated NBs exhibit consistent physical characteristics (size, surface potential, and concentration) when compared with previous studies. For conditions described, which are considered as high O2 NB concentrations, no degradation of benzoic acid (BA), a well-studied ·OH scavenger, was observed in the presence of NBs (over 24 h) and no EPR signal for ·OH was detected. While a positive fluorescence response was measured when using a fluorescence probe for ·OH, aminophenyl fluorescein (APF), we provide an alternate explanation for the result. Gas/liquid interfacial characterization indicates that the surface of a NB is proton-rich and capable of inducing acid-catalyzed hydrolysis of APF, which results in a false (positive) fluorescence response. Given these negative results, we conclude that NB-induced ·OH generation is minimal, if at all, for conditions evaluated.
Nanobubble Reactivity: Evaluating Hydroxyl Radical Generation (or Lack Thereof) under Ambient Conditions
Chae, Seung Hee (Autor:in) / Kim, Min Sik (Autor:in) / Kim, Jae-Hong (Autor:in) / Fortner, John D. (Autor:in)
ACS ES&T Engineering ; 3 ; 1504-1510
13.10.2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Helium nanobubble release from Pd surface: An atomic simulation
British Library Online Contents | 2011
|