Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Estimation of Weibull parameters for wind energy analysis across the UK
Harvesting wind energy resources is a major part of the UK strategy to diversify the power supply portfolio and mitigate environmental degradation. Based on wind speed data for the period 1981–2018, collected at 38 surface observation stations, this study presents a comprehensive assessment of wind speed characteristics by means of statistical analysis using the Weibull distribution function. The estimated Weibull parameters are used to evaluate wind power density at both station and regional levels and important, turbine-specific wind energy assessment parameters. It is shown that the Weibull distribution function provides satisfactory modeling of the probability distribution of daily mean wind speeds, with the correlation coefficient generally exceeding 0.9. Site-to-site variability in wind power density and other essential parameters is apparent. The Weibull scale parameter lies in the range between 4.96 m/s and 12.06 m/s, and the shape parameter ranges from 1.63 to 2.97. The estimated wind power density ranges from 125 W/m2 to 1407 W/m2. Statistically significant long-term trends in annual mean wind speed are identified for only 15 of the 38 stations and three of the 11 geographical regions. The seasonal variability of Weibull parameters and wind power density is confirmed and discussed.
Estimation of Weibull parameters for wind energy analysis across the UK
Harvesting wind energy resources is a major part of the UK strategy to diversify the power supply portfolio and mitigate environmental degradation. Based on wind speed data for the period 1981–2018, collected at 38 surface observation stations, this study presents a comprehensive assessment of wind speed characteristics by means of statistical analysis using the Weibull distribution function. The estimated Weibull parameters are used to evaluate wind power density at both station and regional levels and important, turbine-specific wind energy assessment parameters. It is shown that the Weibull distribution function provides satisfactory modeling of the probability distribution of daily mean wind speeds, with the correlation coefficient generally exceeding 0.9. Site-to-site variability in wind power density and other essential parameters is apparent. The Weibull scale parameter lies in the range between 4.96 m/s and 12.06 m/s, and the shape parameter ranges from 1.63 to 2.97. The estimated wind power density ranges from 125 W/m2 to 1407 W/m2. Statistically significant long-term trends in annual mean wind speed are identified for only 15 of the 38 stations and three of the 11 geographical regions. The seasonal variability of Weibull parameters and wind power density is confirmed and discussed.
Estimation of Weibull parameters for wind energy analysis across the UK
Shu, Z. R. (Autor:in) / Jesson, Mike (Autor:in)
01.01.2021
18 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis
Online Contents | 2000
|Estimation of Weibull parameters with linear regression method
British Library Online Contents | 2010
|