Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
iVisit: Digital Interactive Construction Site Visits Using 360-Degree Panoramas and Virtual Humans
Site visits or field trips are an integral part of construction management education, providing students with experiential learning of jobsite conditions. However, these types of real-world opportunities are difficult to obtain within the current educational framework based on classroom instruction. To expose students to jobsite spatiotemporal contexts (spatial, temporal, or social situations), field trips must be organized at locations that are often inaccessible, dangerous, or expensive to reach. To address field trip barriers, this research proposes the use of iVisit—a proof-of-concept platform for guided interactive site visits that leverages 360-degree panoramas and virtual humans. In this paper, the technical requirements for the creation of digital site visit experiences and resulting educational platform are explained in detail. Additionally, a pilot study was conducted to assess the iVisit platform in terms of usability, presence, and student knowledge gains. A masonry materials’ site visit learning experience was designed and tested with 10 participants at introductory level construction courses. It was found that students perceived the iVisit guided tour as easy to use (SUS Usability Score – Mean = 86%; STD = 8.8%) and highly realistic (SUS Presence Score – Mean = 68.4%; STD = 14.4%). However, students answer approximately one-third of the presented knowledge questions correctly (Student Knowledge Score – Mean = 31.7%; STD = 25%). These outcomes in student knowledge gains were linked to low image quality in the 360-degree captures and augmented pictures within the digital site. Supporting feedback provided by the study participants suggested that future improvements to iVisit require higher image quality and some refinements to its user-interfaces to increase presence and knowledge gains.
iVisit: Digital Interactive Construction Site Visits Using 360-Degree Panoramas and Virtual Humans
Site visits or field trips are an integral part of construction management education, providing students with experiential learning of jobsite conditions. However, these types of real-world opportunities are difficult to obtain within the current educational framework based on classroom instruction. To expose students to jobsite spatiotemporal contexts (spatial, temporal, or social situations), field trips must be organized at locations that are often inaccessible, dangerous, or expensive to reach. To address field trip barriers, this research proposes the use of iVisit—a proof-of-concept platform for guided interactive site visits that leverages 360-degree panoramas and virtual humans. In this paper, the technical requirements for the creation of digital site visit experiences and resulting educational platform are explained in detail. Additionally, a pilot study was conducted to assess the iVisit platform in terms of usability, presence, and student knowledge gains. A masonry materials’ site visit learning experience was designed and tested with 10 participants at introductory level construction courses. It was found that students perceived the iVisit guided tour as easy to use (SUS Usability Score – Mean = 86%; STD = 8.8%) and highly realistic (SUS Presence Score – Mean = 68.4%; STD = 14.4%). However, students answer approximately one-third of the presented knowledge questions correctly (Student Knowledge Score – Mean = 31.7%; STD = 25%). These outcomes in student knowledge gains were linked to low image quality in the 360-degree captures and augmented pictures within the digital site. Supporting feedback provided by the study participants suggested that future improvements to iVisit require higher image quality and some refinements to its user-interfaces to increase presence and knowledge gains.
iVisit: Digital Interactive Construction Site Visits Using 360-Degree Panoramas and Virtual Humans
Eiris, Ricardo (Autor:in) / Wen, Jing (Autor:in) / Gheisari, Masoud (Autor:in)
Construction Research Congress 2020 ; 2020 ; Tempe, Arizona
Construction Research Congress 2020 ; 1106-1116
09.11.2020
Aufsatz (Konferenz)
Elektronische Ressource
Englisch