Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Real-Time Bus Arrival Time Prediction: Case Study for Jinan, China
Providing real-time bus arrival information can help to improve the service quality of a transit system and enhance its competitiveness among other transportation modes. Taking the city of Jinan, China, as an example, this study proposes two artificial neural network (ANN) models to predict the real-time bus arrivals, based on historical global positioning system (GPS) data and automatic fare collection (AFC) system data. Also, to contend with the difficulty in capturing the traffic fluctuations over different time periods and account for the impact of signalized intersections, this study also subdivides the collected dataset into a bunch of clusters. Sub-ANN models are then developed for each cluster and further integrated into a hierarchical ANN model. To validate the proposed models, six scenarios with respect to different time periods and route lengths are tested. The results reveal that both proposed ANN models can outperform the Kalman filter model. Particularly, with several selected performance indices, it has been found that the hierarchical ANN model clearly outperforms the other two models in most scenarios.
Real-Time Bus Arrival Time Prediction: Case Study for Jinan, China
Providing real-time bus arrival information can help to improve the service quality of a transit system and enhance its competitiveness among other transportation modes. Taking the city of Jinan, China, as an example, this study proposes two artificial neural network (ANN) models to predict the real-time bus arrivals, based on historical global positioning system (GPS) data and automatic fare collection (AFC) system data. Also, to contend with the difficulty in capturing the traffic fluctuations over different time periods and account for the impact of signalized intersections, this study also subdivides the collected dataset into a bunch of clusters. Sub-ANN models are then developed for each cluster and further integrated into a hierarchical ANN model. To validate the proposed models, six scenarios with respect to different time periods and route lengths are tested. The results reveal that both proposed ANN models can outperform the Kalman filter model. Particularly, with several selected performance indices, it has been found that the hierarchical ANN model clearly outperforms the other two models in most scenarios.
Real-Time Bus Arrival Time Prediction: Case Study for Jinan, China
Lin, Yongjie (Autor:in) / Yang, Xianfeng (Autor:in) / Zou, Nan (Autor:in) / Jia, Lei (Autor:in)
Journal of Transportation Engineering ; 139 ; 1133-1140
06.06.2013
82013-01-01 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Real-Time Bus Arrival Time Prediction: Case Study for Jinan, China
Online Contents | 2013
|Real-Time Bus Arrival Time Prediction: Case Study for Jinan, China
Online Contents | 2013
|Experimental Study of Real-Time Bus Arrival Time Prediction with GPS Data
British Library Online Contents | 1999
|Prediction Model of Bus Arrival Time for Real-Time Applications
British Library Online Contents | 2005
|Application Scheme Organization of Arrival-Departure Line at Jinan West Railway Station
British Library Conference Proceedings | 2015
|