Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Dynamic Energy Based Method for Progressive Collapse Analysis
Physics based collapse simulations of moment resisting steel frame buildings are presented with an emphasis on the development of energy flow relationships. It is proposed that energy flow during progressive collapse can be used in evaluation of moment resisting, steel frame building behavior and specifically, localized failure. If a collapsing structure is capable of attaining a stable energy state through absorption of gravitational energy, then collapse will be arrested. Otherwise, if a deficit in energy dissipation develops, the unabsorbed portion of released gravitational energy is converted into kinetic energy and collapse propagates from unstable state to unstable state until total failure occurs. The energy absorption of individual members provides very transparent information on structural behavior as opposed to oscillating internal dynamic forces in structural members. Therefore, critical energy absorption capacity is hereby proposed as a stable failure criterion in progressive collapse analysis. Energy flow quantification is shown to be readily available from the dynamic finite element simulations. The proposed dynamic, energy based approach to progressive collapse, provides insight and a simple yet robust analysis for producing structures capable of resisting abnormal loadings and/or unexpected hazards.
Dynamic Energy Based Method for Progressive Collapse Analysis
Physics based collapse simulations of moment resisting steel frame buildings are presented with an emphasis on the development of energy flow relationships. It is proposed that energy flow during progressive collapse can be used in evaluation of moment resisting, steel frame building behavior and specifically, localized failure. If a collapsing structure is capable of attaining a stable energy state through absorption of gravitational energy, then collapse will be arrested. Otherwise, if a deficit in energy dissipation develops, the unabsorbed portion of released gravitational energy is converted into kinetic energy and collapse propagates from unstable state to unstable state until total failure occurs. The energy absorption of individual members provides very transparent information on structural behavior as opposed to oscillating internal dynamic forces in structural members. Therefore, critical energy absorption capacity is hereby proposed as a stable failure criterion in progressive collapse analysis. Energy flow quantification is shown to be readily available from the dynamic finite element simulations. The proposed dynamic, energy based approach to progressive collapse, provides insight and a simple yet robust analysis for producing structures capable of resisting abnormal loadings and/or unexpected hazards.
Dynamic Energy Based Method for Progressive Collapse Analysis
Szyniszewski, Stefan (Autor:in)
Structures Congress 2009 ; 2009 ; Austin, Texas, United States
Structures Congress 2009 ; 1-10
29.04.2009
Aufsatz (Konferenz)
Elektronische Ressource
Englisch
Dynamic Energy based Method for Progressive Collapse Analysis
British Library Conference Proceedings | 2009
|Progressive Analysis Procedure for Progressive Collapse
Online Contents | 2004
|Inelastic Dynamic Progressive Collapse Analysis of Truss Structures
British Library Conference Proceedings | 2006
|British Library Online Contents | 2005
|Methodologies for Progressive Collapse Analysis
British Library Conference Proceedings | 2009
|