Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Scalable Perimeter Control Strategy of Road Network Based on the Macroscopic Fundamental Diagram
To alleviate regional traffic congestion in large areas of the urban zonal road network, an extensible perimeter control strategy based on the macroscopic fundamental diagram is proposed to improve the effectiveness of the entire urban network. The proposed strategy considers the fleet storage capacity of the links, avoids over queuing, and establishes a constraint of perimeter control and a regional feedback control model. A new extended boundary is formed by dynamically adjusting the control boundary of the protected area in real time, and a feedback gate is set at the junction of extended boundary to restrict the traffic flow in the road network of the congested area. To verify the effectiveness of the proposed strategy, a Sioux Falls test network is used as the research area, and the effect of the proposed strategy is evaluated in Vissim. Simulation results show that the implementation of the scalable perimeter control strategy improves the operation index of the road network, and a wide range of congestion is obviously alleviated.
Scalable Perimeter Control Strategy of Road Network Based on the Macroscopic Fundamental Diagram
To alleviate regional traffic congestion in large areas of the urban zonal road network, an extensible perimeter control strategy based on the macroscopic fundamental diagram is proposed to improve the effectiveness of the entire urban network. The proposed strategy considers the fleet storage capacity of the links, avoids over queuing, and establishes a constraint of perimeter control and a regional feedback control model. A new extended boundary is formed by dynamically adjusting the control boundary of the protected area in real time, and a feedback gate is set at the junction of extended boundary to restrict the traffic flow in the road network of the congested area. To verify the effectiveness of the proposed strategy, a Sioux Falls test network is used as the research area, and the effect of the proposed strategy is evaluated in Vissim. Simulation results show that the implementation of the scalable perimeter control strategy improves the operation index of the road network, and a wide range of congestion is obviously alleviated.
Scalable Perimeter Control Strategy of Road Network Based on the Macroscopic Fundamental Diagram
Li, Xin (Autor:in) / Mao, Jian-nan (Autor:in) / Luo, Chen (Autor:in) / Liu, Lan (Autor:in)
01.12.2018
72019-01-01 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Routing Strategies Based on Macroscopic Fundamental Diagram
British Library Online Contents | 2012
|British Library Online Contents | 2013
|