Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Method for Estimating System Stiffness for Excavation Support Walls
Excessive excavation-induced movements are major concerns for most underground construction projects in urban areas. These movements can lead to significant damage in adjacent structures. When average to good workmanship is employed during the installation process of the excavation support systems, the consequent ground movements are most influenced by the support system stiffness. Therefore, choosing the most appropriate stiffness for an excavation support system is crucial to minimizing excavation-related damage to adjacent buildings and utilities. This paper presents a semiempirical design methodology that facilitates the selecting of the excavation support system stiffness in such a way that limits excavation-related ground movement. As part of the proposed design methodology, a new parameter was developed called the relative stiffness ratio. This new parameter relates the strength and stiffness of the soil with the stiffness of the excavation support system and was developed from a comprehensive parametric analysis that incorporated a fully three-dimensional finite-element analysis of a generalized excavation that realistically modeled the excavation geometry, excavation support system configuration, and excavation activities. The performance of the proposed methodology was evaluated using several excavation case histories reported worldwide. The results of the evaluation show that the new relative stiffness ratio performed well in predicting the support system bending stiffness and the actual excavation-induced lateral deformations of the case history support systems.
Method for Estimating System Stiffness for Excavation Support Walls
Excessive excavation-induced movements are major concerns for most underground construction projects in urban areas. These movements can lead to significant damage in adjacent structures. When average to good workmanship is employed during the installation process of the excavation support systems, the consequent ground movements are most influenced by the support system stiffness. Therefore, choosing the most appropriate stiffness for an excavation support system is crucial to minimizing excavation-related damage to adjacent buildings and utilities. This paper presents a semiempirical design methodology that facilitates the selecting of the excavation support system stiffness in such a way that limits excavation-related ground movement. As part of the proposed design methodology, a new parameter was developed called the relative stiffness ratio. This new parameter relates the strength and stiffness of the soil with the stiffness of the excavation support system and was developed from a comprehensive parametric analysis that incorporated a fully three-dimensional finite-element analysis of a generalized excavation that realistically modeled the excavation geometry, excavation support system configuration, and excavation activities. The performance of the proposed methodology was evaluated using several excavation case histories reported worldwide. The results of the evaluation show that the new relative stiffness ratio performed well in predicting the support system bending stiffness and the actual excavation-induced lateral deformations of the case history support systems.
Method for Estimating System Stiffness for Excavation Support Walls
Bryson, L. Sebastian (Autor:in) / Zapata-Medina, David G. (Autor:in)
Journal of Geotechnical and Geoenvironmental Engineering ; 138 ; 1104-1115
08.12.2011
122012-01-01 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Method for Estimating System Stiffness for Excavation Support Walls
British Library Online Contents | 2012
|Estimating System Stiffness of Soil Nailing Wall for Deep Excavation in Clay
Springer Verlag | 2022
|TIBKAT | 2000
|Shear Key Reinforced DSM to Stabilize Excavation Support Walls
British Library Conference Proceedings | 2001
|EXCAVATION SUPPORT DEVICE, EXCAVATION SUPPORT METHOD AND EXCAVATION SUPPORT PROGRAM
Europäisches Patentamt | 2024
|