Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Optimization of Water Distribution Systems Using Online Retrained Metamodels
This paper proposes the use of online retrained metamodels for the optimization of water distribution system (WDS) design. In these metamodels, artificial neural networks (ANNs) are used to replace the full hydraulic and water quality simulation models and differential evolution (DE) is utilized to carry out the optimization. The ANNs in the proposed online DE-ANN model are retrained periodically during the optimization in order to improve their approximation to the appropriate portion of the search space. In addition, a local search strategy is used to further polish the final solution obtained by the online DE-ANN model. Three case studies are used to verify the effectiveness of the proposed online retrained DE-ANN model for which both hydraulic and water quality constraints are considered. In order to enable a performance comparison, a model in which a DE is combined with a full hydraulic and water quality simulation model (DE-EPANET2.0) and an offline DE-ANN model (ANNs are trained only once at the beginning of optimization) are established and applied to each case study. The results obtained show that the proposed online retrained DE-ANN model consistently outperforms the offline DE-ANN model for each case study in terms of efficiency and solution quality. Compared with the DE-EPANET2.0 model, the proposed online DE-ANN model exhibits a substantial improvement in computational efficiency, while still producing reasonably good quality solutions.
Optimization of Water Distribution Systems Using Online Retrained Metamodels
This paper proposes the use of online retrained metamodels for the optimization of water distribution system (WDS) design. In these metamodels, artificial neural networks (ANNs) are used to replace the full hydraulic and water quality simulation models and differential evolution (DE) is utilized to carry out the optimization. The ANNs in the proposed online DE-ANN model are retrained periodically during the optimization in order to improve their approximation to the appropriate portion of the search space. In addition, a local search strategy is used to further polish the final solution obtained by the online DE-ANN model. Three case studies are used to verify the effectiveness of the proposed online retrained DE-ANN model for which both hydraulic and water quality constraints are considered. In order to enable a performance comparison, a model in which a DE is combined with a full hydraulic and water quality simulation model (DE-EPANET2.0) and an offline DE-ANN model (ANNs are trained only once at the beginning of optimization) are established and applied to each case study. The results obtained show that the proposed online retrained DE-ANN model consistently outperforms the offline DE-ANN model for each case study in terms of efficiency and solution quality. Compared with the DE-EPANET2.0 model, the proposed online DE-ANN model exhibits a substantial improvement in computational efficiency, while still producing reasonably good quality solutions.
Optimization of Water Distribution Systems Using Online Retrained Metamodels
Bi, Weiwei (Autor:in) / Dandy, Graeme C. (Autor:in)
26.10.2013
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Optimization of Water Distribution Systems Using Online Retrained Metamodels
British Library Online Contents | 2014
|Water Distribution System Optimization Using Metamodels
Online Contents | 2005
|Water Distribution System Optimization Using Metamodels
British Library Online Contents | 2005
|Optimal Operation of Complex Water Distribution Systems Using Metamodels
Online Contents | 2010
|Optimal Operation of Complex Water Distribution Systems Using Metamodels
British Library Online Contents | 2010
|