Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Theoretical t-z Curves for Axially Loaded Piles
Estimation of nonlinear pile settlement can be simplified using one-dimensional “t-z” curves that conveniently divide the soil into multiple horizontal “slices.” This simplification reduces the continuum analysis to a two-point boundary-value problem of the Winkler type, which can be tackled by standard numerical procedures. Theoretical “t-z” curves can be established using the “shearing-of-concentric-cylinders” theory of Cooke and Randolph-Wroth, which involves two main elements: (1) a constitutive model cast in flexibility form, γ=γ(τ); and (2) an attenuation function of shear stress with radial distance from the pile, τ=τ(r). Soil settlement can then be determined by integrating shear strains over the radial coordinate, which often leads to closed-form solutions. Despite the simplicity and physical appeal of the method, only a few theoretical “t-z” curves are available in the literature. This paper introduces three novel attenuation functions for shear stresses, inspired by continuum solutions, which are employed in conjunction with eight soil constitutive models leading to a set of 32 “t-z” curves. Illustrative examples of pile settlement calculation in two soil types are presented to demonstrate application of the method.
Theoretical t-z Curves for Axially Loaded Piles
Estimation of nonlinear pile settlement can be simplified using one-dimensional “t-z” curves that conveniently divide the soil into multiple horizontal “slices.” This simplification reduces the continuum analysis to a two-point boundary-value problem of the Winkler type, which can be tackled by standard numerical procedures. Theoretical “t-z” curves can be established using the “shearing-of-concentric-cylinders” theory of Cooke and Randolph-Wroth, which involves two main elements: (1) a constitutive model cast in flexibility form, γ=γ(τ); and (2) an attenuation function of shear stress with radial distance from the pile, τ=τ(r). Soil settlement can then be determined by integrating shear strains over the radial coordinate, which often leads to closed-form solutions. Despite the simplicity and physical appeal of the method, only a few theoretical “t-z” curves are available in the literature. This paper introduces three novel attenuation functions for shear stresses, inspired by continuum solutions, which are employed in conjunction with eight soil constitutive models leading to a set of 32 “t-z” curves. Illustrative examples of pile settlement calculation in two soil types are presented to demonstrate application of the method.
Theoretical t-z Curves for Axially Loaded Piles
J. Geotech. Geoenviron. Eng.
Bateman, Abigail H. (Autor:in) / Crispin, Jamie J. (Autor:in) / Vardanega, Paul J. (Autor:in) / Mylonakis, George E. (Autor:in)
01.07.2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Winkler modulus for axially loaded piles
Online Contents | 2001
|Winkler modulus for axially loaded piles
British Library Online Contents | 2001
|Settlement Analysis of Axially Loaded Piles
British Library Conference Proceedings | 2008
|Centrifugal Modeling of Axially Loaded Piles
NTIS | 1980
|