Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Centrifugal Investigation of Excavation Adjacent to Existing Composite Foundation
This paper discusses an experimental investigation, by centrifuge tests, of excavation behavior adjacent to existing composite foundations, with the aim to understand excavation-induced lateral earth pressures and deformation mechanisms and so assist the design of preliminary retaining structures for excavation. In particular, the behavior of excavated composite foundations was investigated based on centrifuge model tests. Experimental studies concentrated on excavation-induced lateral earth pressures, bending moments of retaining structures, lateral deformation, and ground settlement. This further led to a detailed investigation of the resulting deformation mechanism of excavated composite foundations and its influence on the safety of overlying structures and the economic design of side retaining structures. Moreover, the effects of different surcharge load amplitudes (i.e., representing overlying buildings of different heights) on the behavior of excavated composite foundations were analyzed through parametric experimental studies. Based on the experimental results, the following conclusions can be drawn: (1) excavation-induced earth pressures in the composite foundation are smaller than the Rankine active earth pressures in the depth range of the excavation, indicating that the Rankine method for predicting active earth pressure is conservative for the excavation problems in a composite foundation; (2) the excavation-induced bending moment is observed to peak at approximately 3 m below the corresponding excavation bottom; (3) the relation between excavation-induced settlement and distance from the excavation can be assumed to be exponential; (4) greater surface load induces larger lateral earth pressure amplitudes and bending moments on the retaining pile raft, whereas the position of the maximum bending moment is consistent regardless of the load amplitude.
Centrifugal Investigation of Excavation Adjacent to Existing Composite Foundation
This paper discusses an experimental investigation, by centrifuge tests, of excavation behavior adjacent to existing composite foundations, with the aim to understand excavation-induced lateral earth pressures and deformation mechanisms and so assist the design of preliminary retaining structures for excavation. In particular, the behavior of excavated composite foundations was investigated based on centrifuge model tests. Experimental studies concentrated on excavation-induced lateral earth pressures, bending moments of retaining structures, lateral deformation, and ground settlement. This further led to a detailed investigation of the resulting deformation mechanism of excavated composite foundations and its influence on the safety of overlying structures and the economic design of side retaining structures. Moreover, the effects of different surcharge load amplitudes (i.e., representing overlying buildings of different heights) on the behavior of excavated composite foundations were analyzed through parametric experimental studies. Based on the experimental results, the following conclusions can be drawn: (1) excavation-induced earth pressures in the composite foundation are smaller than the Rankine active earth pressures in the depth range of the excavation, indicating that the Rankine method for predicting active earth pressure is conservative for the excavation problems in a composite foundation; (2) the excavation-induced bending moment is observed to peak at approximately 3 m below the corresponding excavation bottom; (3) the relation between excavation-induced settlement and distance from the excavation can be assumed to be exponential; (4) greater surface load induces larger lateral earth pressure amplitudes and bending moments on the retaining pile raft, whereas the position of the maximum bending moment is consistent regardless of the load amplitude.
Centrifugal Investigation of Excavation Adjacent to Existing Composite Foundation
Li, Lianxiang (Autor:in) / Huang, Jiajia (Autor:in) / Han, Bo (Autor:in)
25.05.2018
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Centrifugal Investigation of Excavation Adjacent to Existing Composite Foundation
British Library Online Contents | 2018
|Interaction Analysis of Foundation Pit Excavation and Adjacent Existing Building's Pile Foundation
British Library Conference Proceedings | 2014
|Effect Analysis on Foundation Pit Excavation Adjacent to Existing Railway
British Library Conference Proceedings | 2013
|Interaction Analysis of Foundation Pit Excavation and Adjacent Existing Building's Pile Foundation
Trans Tech Publications | 2014
|Effect Analysis on Foundation Pit Excavation Adjacent to Existing Railway
Trans Tech Publications | 2013
|