Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Simple Homogenized Model for the Nonlinear Analysis of FRP-Strengthened Masonry Structures. I: Theory
A suitable and simple two-step model able to predict the nonlinear response of fiber-reinforced polymer (FRP)-strengthened three-dimensional masonry structures is presented. In the first step, nonstrengthened masonry is substituted by a macroscopically equivalent homogeneous material through a kinematic model based on finite elements and working on a heterogeneous assemblage of blocks. Nonlinearity is concentrated exclusively on joints reduced to interfaces exhibiting a frictional behavior with limited tensile and compressive strength with softening. The homogenized stress-strain behavior evaluated at the mesoscale is then implemented at a structural level in a finite-element nonlinear code, relying on an assemblage of rigid infinitely resistant six-noded wedge elements and nonlinear interfaces, exhibiting deterioration of the mechanical properties. The FRP-reinforcing strips are modeled through rigid triangles and nonlinear interfaces between adjoining triangles. Delamination from the support is accounted for by modeling the FRP-masonry bond by means of nonlinear softening triangular interfaces. Italian code formulas are used to evaluate peak interface tangential strength and postpeak behavior. In this first part, the theoretical basis of the model and the nonlinear stress-strain behavior at a cell level are discussed. Structural examples will be analyzed in the accompanying paper devoted to the structural scale.
Simple Homogenized Model for the Nonlinear Analysis of FRP-Strengthened Masonry Structures. I: Theory
A suitable and simple two-step model able to predict the nonlinear response of fiber-reinforced polymer (FRP)-strengthened three-dimensional masonry structures is presented. In the first step, nonstrengthened masonry is substituted by a macroscopically equivalent homogeneous material through a kinematic model based on finite elements and working on a heterogeneous assemblage of blocks. Nonlinearity is concentrated exclusively on joints reduced to interfaces exhibiting a frictional behavior with limited tensile and compressive strength with softening. The homogenized stress-strain behavior evaluated at the mesoscale is then implemented at a structural level in a finite-element nonlinear code, relying on an assemblage of rigid infinitely resistant six-noded wedge elements and nonlinear interfaces, exhibiting deterioration of the mechanical properties. The FRP-reinforcing strips are modeled through rigid triangles and nonlinear interfaces between adjoining triangles. Delamination from the support is accounted for by modeling the FRP-masonry bond by means of nonlinear softening triangular interfaces. Italian code formulas are used to evaluate peak interface tangential strength and postpeak behavior. In this first part, the theoretical basis of the model and the nonlinear stress-strain behavior at a cell level are discussed. Structural examples will be analyzed in the accompanying paper devoted to the structural scale.
Simple Homogenized Model for the Nonlinear Analysis of FRP-Strengthened Masonry Structures. I: Theory
Milani, Gabriele (Autor:in) / Lourenço, Paulo B. (Autor:in)
Journal of Engineering Mechanics ; 139 ; 59-76
02.05.2012
182013-01-01 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
BASE | 2013
|A simple homogenized model for the non-linear analysis of FRP strengthened masonry structures
BASE | 2012
|