Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Development and Application of High-Sensitivity Wireless Smart Sensors for Decentralized Stochastic Modal Identification
State-of-the-art smart sensor technology enables deployment of dense arrays of sensors, which is critical for structural health monitoring (SHM) of complicated and large-scale civil structures. Despite recent successful implementation of various wireless smart sensor networks (WSSNs) for full-scale SHM, the low-cost micro-electro-mechanical systems (MEMS) sensors commonly used in smart sensors cannot readily measure low-level ambient vibrations because of their relatively low resolution. Combined use of conventional wired high-sensitivity sensors with low-cost wireless smart sensors has been shown to provide improved spectral estimates of response that can lead to improved experimental modal analysis. However, such a heterogeneous network of wired and wireless sensors requires central collection of an enormous amount of raw data and off-network processing to achieve global time synchronization; consequently, many of the advantages of WSSNs for SHM are lost. In this paper, the development of a new high-sensitivity accelerometer board (SHM-H) for the Imote2 wireless smart sensor (WSS) platform is presented. The use of a small number of these high-sensitivity WSSs, composed of the SHM-H and Imote2, as reference sensors in the Natural Excitation Technique—based decentralized WSSN strategy is explored and is shown to provide a cost-effective means of improving modal feature extraction in the decentralized WSSN for SHM.
Development and Application of High-Sensitivity Wireless Smart Sensors for Decentralized Stochastic Modal Identification
State-of-the-art smart sensor technology enables deployment of dense arrays of sensors, which is critical for structural health monitoring (SHM) of complicated and large-scale civil structures. Despite recent successful implementation of various wireless smart sensor networks (WSSNs) for full-scale SHM, the low-cost micro-electro-mechanical systems (MEMS) sensors commonly used in smart sensors cannot readily measure low-level ambient vibrations because of their relatively low resolution. Combined use of conventional wired high-sensitivity sensors with low-cost wireless smart sensors has been shown to provide improved spectral estimates of response that can lead to improved experimental modal analysis. However, such a heterogeneous network of wired and wireless sensors requires central collection of an enormous amount of raw data and off-network processing to achieve global time synchronization; consequently, many of the advantages of WSSNs for SHM are lost. In this paper, the development of a new high-sensitivity accelerometer board (SHM-H) for the Imote2 wireless smart sensor (WSS) platform is presented. The use of a small number of these high-sensitivity WSSs, composed of the SHM-H and Imote2, as reference sensors in the Natural Excitation Technique—based decentralized WSSN strategy is explored and is shown to provide a cost-effective means of improving modal feature extraction in the decentralized WSSN for SHM.
Development and Application of High-Sensitivity Wireless Smart Sensors for Decentralized Stochastic Modal Identification
Jo, Hongki (Autor:in) / Sim, Sung-Han (Autor:in) / Nagayama, Tomonori (Autor:in) / Spencer, B. F. (Autor:in)
Journal of Engineering Mechanics ; 138 ; 683-694
18.11.2011
122012-01-01 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch