Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Probabilistic damage identification of the Dowling Hall footbridge through Hierarchical Bayesian model updating
In this paper, a Hierarchical Bayesian finite element model updating framework is applied for probabilistic identification of simulated damage on the Dowling Hall Footbridge. The footbridge is located at Tufts campus and is equipped with a continuous monitoring system, including 12 accelerometers. Structural damage is simulated by the addition of mass on a small segment of the footbridge, and the Hierarchical framework is used to identify the location and extent of the damage (added mass), and to quantify the prediction uncertainties. This framework is well suited for applications to civil structures, where the structural properties (stiffness, mass) can be considered time-variant due to changing environmental conditions such as temperature, wind speed, or traffic. ; Non UBC ; Unreviewed ; This collection contains the proceedings of ICASP12, the 12th International Conference on Applications of Statistics and Probability in Civil Engineering held in Vancouver, Canada on July 12-15, 2015. Abstracts were peer-reviewed and authors of accepted abstracts were invited to submit full papers. Also full papers were peer reviewed. The editor for this collection is Professor Terje Haukaas, Department of Civil Engineering, UBC Vancouver. ; Faculty ; Researcher
Probabilistic damage identification of the Dowling Hall footbridge through Hierarchical Bayesian model updating
In this paper, a Hierarchical Bayesian finite element model updating framework is applied for probabilistic identification of simulated damage on the Dowling Hall Footbridge. The footbridge is located at Tufts campus and is equipped with a continuous monitoring system, including 12 accelerometers. Structural damage is simulated by the addition of mass on a small segment of the footbridge, and the Hierarchical framework is used to identify the location and extent of the damage (added mass), and to quantify the prediction uncertainties. This framework is well suited for applications to civil structures, where the structural properties (stiffness, mass) can be considered time-variant due to changing environmental conditions such as temperature, wind speed, or traffic. ; Non UBC ; Unreviewed ; This collection contains the proceedings of ICASP12, the 12th International Conference on Applications of Statistics and Probability in Civil Engineering held in Vancouver, Canada on July 12-15, 2015. Abstracts were peer-reviewed and authors of accepted abstracts were invited to submit full papers. Also full papers were peer reviewed. The editor for this collection is Professor Terje Haukaas, Department of Civil Engineering, UBC Vancouver. ; Faculty ; Researcher
Probabilistic damage identification of the Dowling Hall footbridge through Hierarchical Bayesian model updating
01.07.2015
Aufsatz (Konferenz)
Elektronische Ressource
Englisch
DDC:
621
Bayesian FE Model Updating of the Dowling Hall Footbridge
Springer Verlag | 2012
|Bayesian FE Model Updating of the Dowling Hall Footbridge
British Library Conference Proceedings | 2012
|