Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Enhancing the energy storage capability of electric domestic hot water tanks
Electric hot water tanks play a pivotal role as demand response assets within the UK's energy system by storing heat when energy is inexpensive and delivering domestic hot water when it is required. This role will become increasingly important if non-dispatchable renewable energy sources are to play a bigger part in the energy mix. Historically, the design standards relating to hot water tanks have focused primarily on minimising heat losses. However, in addition to preserving energy, a hot water tank should preserve the availability of heat above a useful temperature for as long as possible to avoid energy usage during peak times when it is costly or carbon intensive. To do this, thermal stratification within hot water tanks must be promoted. Unfortunately, thermal stratification leads to conditions that are conducive to bacterial growth due to the hospitable temperatures that arise during operation. For this reason, question marks have arisen over the extent to which more flexible control strategies, designed to allow for increasing penetrations of intermittent renewable energy sources, might lead to the growth of pathogenic bacteria within hot water tanks. The objective of the work discussed in this thesis was to understand the extent to which there is a conflict between thermal stratification and bacterial growth in practice, whether this conflict can be resolved and the potential implications for electric hot water tanks operating on a time of use tariff. A small field study demonstrated that there is prolific bacterial growth within conventional electric cylinders and that this can be attributed to thermal stratification with a confidence of (P<0.01). Fitting a de-stratification pump, to enhance sanitary performance, resulted in a 19% decrease in the recovery of useable hot water above 43°C. Given that the tanks tested during the field study were made of copper, the consequences of alternative material choices on thermal performance were explored. It was found that the rate of useable hot water ...
Enhancing the energy storage capability of electric domestic hot water tanks
Electric hot water tanks play a pivotal role as demand response assets within the UK's energy system by storing heat when energy is inexpensive and delivering domestic hot water when it is required. This role will become increasingly important if non-dispatchable renewable energy sources are to play a bigger part in the energy mix. Historically, the design standards relating to hot water tanks have focused primarily on minimising heat losses. However, in addition to preserving energy, a hot water tank should preserve the availability of heat above a useful temperature for as long as possible to avoid energy usage during peak times when it is costly or carbon intensive. To do this, thermal stratification within hot water tanks must be promoted. Unfortunately, thermal stratification leads to conditions that are conducive to bacterial growth due to the hospitable temperatures that arise during operation. For this reason, question marks have arisen over the extent to which more flexible control strategies, designed to allow for increasing penetrations of intermittent renewable energy sources, might lead to the growth of pathogenic bacteria within hot water tanks. The objective of the work discussed in this thesis was to understand the extent to which there is a conflict between thermal stratification and bacterial growth in practice, whether this conflict can be resolved and the potential implications for electric hot water tanks operating on a time of use tariff. A small field study demonstrated that there is prolific bacterial growth within conventional electric cylinders and that this can be attributed to thermal stratification with a confidence of (P<0.01). Fitting a de-stratification pump, to enhance sanitary performance, resulted in a 19% decrease in the recovery of useable hot water above 43°C. Given that the tanks tested during the field study were made of copper, the consequences of alternative material choices on thermal performance were explored. It was found that the rate of useable hot water ...
Enhancing the energy storage capability of electric domestic hot water tanks
Armstrong, P (Autor:in) / McCulloch, M
16.09.2016
Hochschulschrift
Elektronische Ressource
Englisch
DDC:
690
Failures of Domestic Hot Water Storage Tanks
Wiley | 1946
|Batteries of Solar Thermal Energy: Specing storage tanks for solar domestic hot water systems
British Library Online Contents | 2010
EXPERIMENTAL STUDY OF HOT WATER STORAGE TANKS FROM A DOMESTIC REFRIGERATOR
BASE | 2008
|Engineering Your Business - Domestic Water Systems - Part 6 -- Pressure and Storage Tanks
Online Contents | 2007
|Prevalence of Antibiotic-Resistant Bacteria in Domestic Water Storage Tanks in Sidon, Lebanon
DOAJ | 2023
|