Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Previous experimental and numerical studies indicate that the stress state of sand at a specific depth changes significantly during the installation of a displacement pile. At a given depth level, the horizontal stress in sand increases as the end of pile approaches and reduces as the pile continues to penetrate and go past the sand element. This horizontal stress reversal, together with the large-strain deformation of the sand at the pile shaft, may cause a reduced accuracy in the calculation of pile capacity. In this paper, the micro-mechanical behaviour of sand developed around pile shaft during the installation of a closed-ended pile was studied using the two-dimensional Discrete Element Method (DEM). Sand assembly was modelled as uncrushable discs, and the closed-ended pile was modelled as a rigid clump which was made of a large number of overlapped discs with a fixed distance. The sand responses in terms of stress, strain and volume changes during the monotonic jacking of the closed-ended pile were investigated. Simulation results revealed micro-mechanical behaviours of the sand in both the interface zone “B” adjacent to the pile shaft and the far field zone “A” away from the pile. It was shown that the sand along the pile shaft at a small normalised distance to pile tip was subjected to a volume reduction as the pile goes past. As the pile drives deeper, the sand at a larger normalised distance to pile tip exhibited dilation. This captured process will give insights to the degradation of shaft friction at a given sand horizon.
Previous experimental and numerical studies indicate that the stress state of sand at a specific depth changes significantly during the installation of a displacement pile. At a given depth level, the horizontal stress in sand increases as the end of pile approaches and reduces as the pile continues to penetrate and go past the sand element. This horizontal stress reversal, together with the large-strain deformation of the sand at the pile shaft, may cause a reduced accuracy in the calculation of pile capacity. In this paper, the micro-mechanical behaviour of sand developed around pile shaft during the installation of a closed-ended pile was studied using the two-dimensional Discrete Element Method (DEM). Sand assembly was modelled as uncrushable discs, and the closed-ended pile was modelled as a rigid clump which was made of a large number of overlapped discs with a fixed distance. The sand responses in terms of stress, strain and volume changes during the monotonic jacking of the closed-ended pile were investigated. Simulation results revealed micro-mechanical behaviours of the sand in both the interface zone “B” adjacent to the pile shaft and the far field zone “A” away from the pile. It was shown that the sand along the pile shaft at a small normalised distance to pile tip was subjected to a volume reduction as the pile goes past. As the pile drives deeper, the sand at a larger normalised distance to pile tip exhibited dilation. This captured process will give insights to the degradation of shaft friction at a given sand horizon.
DEM investigation of sand response during displacement pile installation
15.06.2021
Ocean Engineering , 230 , Article 109040. (2021)
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
DDC:
690
Numerical investigation of displacement pile installation in silica sand
Elsevier | 2023
|Sand grain crushing and interface shearing during displacement pile installation in sand
British Library Online Contents | 2010
|Sand grain crushing and interface shearing during displacement pile installation in sand
Online Contents | 2010
|BASE | 2014
|DOAJ | 2014
|