Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Utilizing Flexibility of Electric Heating in Demand Side Management Programs in Finland in 2050
Driven by climate change concerns, our energy system has been under steady change. Renewable energy sources are increasingly used to decarbonize our energy system, making it also more decentralized. At the same time, information and communications technologies (ICT) are enabling smart services for consumers, offering financial benefits through demand side management (DSM) programs. This study investigates various DSM solutions for a detached house in Northern Finnish conditions in 2050. A thermal model is used to model the thermal behavior of the building and test out DSM programs in direct electric space heating and underfloor heating alternatives. The 2050 scenarios are created from climate change projections, existing data on electricity generation and from projections on the future energy system and cost of electricity. The results indicate that load shifting with photovoltaic (PV) generation is a potential way of reducing costs and CO2 emissions both today and in 2050, but it lacks economic feasibility due to long payback times of the investments. Cost optimized direct electric space heating and underfloor heating are both able to provide economic and environmental benefits when compared to manually controlled heating. The scenarios presented in the paper suggest that 95-96% emission reduction can be achieved; however, the electricity cost of households is expected to increase by 174-253%. At the same time electricity consumption from the grid is expected to reduce by 3-10% in all the scenarios.
Utilizing Flexibility of Electric Heating in Demand Side Management Programs in Finland in 2050
Driven by climate change concerns, our energy system has been under steady change. Renewable energy sources are increasingly used to decarbonize our energy system, making it also more decentralized. At the same time, information and communications technologies (ICT) are enabling smart services for consumers, offering financial benefits through demand side management (DSM) programs. This study investigates various DSM solutions for a detached house in Northern Finnish conditions in 2050. A thermal model is used to model the thermal behavior of the building and test out DSM programs in direct electric space heating and underfloor heating alternatives. The 2050 scenarios are created from climate change projections, existing data on electricity generation and from projections on the future energy system and cost of electricity. The results indicate that load shifting with photovoltaic (PV) generation is a potential way of reducing costs and CO2 emissions both today and in 2050, but it lacks economic feasibility due to long payback times of the investments. Cost optimized direct electric space heating and underfloor heating are both able to provide economic and environmental benefits when compared to manually controlled heating. The scenarios presented in the paper suggest that 95-96% emission reduction can be achieved; however, the electricity cost of households is expected to increase by 174-253%. At the same time electricity consumption from the grid is expected to reduce by 3-10% in all the scenarios.
Utilizing Flexibility of Electric Heating in Demand Side Management Programs in Finland in 2050
Jean-Nicolas Louis (Autor:in) / Jari Pulkkinen (Autor:in)
13.08.2019
Aufsatz (Konferenz)
Elektronische Ressource
Englisch
DDC:
690
Utilizing flexibility of electric heating in demand side management programs in Finland in 2050
BASE | 2019
|Demand-Side Energy Flexibility Management of Office Buildings
Springer Verlag | 2019
|Natural Gas Demand-Side Management Programs: A National Survey
British Library Conference Proceedings | 2006
|BASE | 2020
|