Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Delivering sustainable energy transition : A techno-economic analysis on households, businesses and communities of the Keweenaw Peninsula
Energy security understood as the practice by which risks associated with interruptions to the energy supply are low, represents one of the main objectives of energy policies in many countries. In this context, Keweenaw County or Michigan's northernmost County is placed as locked in an unreliable, unsustainable and particularly wasteful energy system. The cost of electricity is among the highest in comparison with the national average tariffs, extreme weather makes grid outages commonplace, and the vast majority of both electricity and heat is supplied by fossil fuels. This thesis project aims to identify the most appropriate strategies for the evaluation of alternative and more sustainable energy systems that can replace the current ones. The first phase of the thesis was based on quantifying the energy needs of the analyzed region. To do this, a bottom-up approach based on buildings archetypes has been adopted. At the beginning of the modelling process a new reference building stock, in which different building types and construction periods have been considered, has been designed. Once the energy loads of single buildings have been obtained, the results have been scaled at a community level. In total, three types of consumers have been addressed throughout the following study: individual households, businesses, and communities. System design configurations intended to satisfy requests in terms of lights and electric appliances, space heating and cooling, cooking and service hot water have been examined. Energy supply technologies such as solar photovoltaics (PV), storage, air source heat pumps (ASHP), ground source heat pumps (GSHP) and small-scale biomass combined heat and power (CHP) units are analyzed. Multiple electrification levels, from baseline to more advanced configurations where electricity represents the only energy carrier are evaluated. A different approach is adopted at community scale where different scenarios are discussed. Technical feasibility and economic viability of each electrification ...
Delivering sustainable energy transition : A techno-economic analysis on households, businesses and communities of the Keweenaw Peninsula
Energy security understood as the practice by which risks associated with interruptions to the energy supply are low, represents one of the main objectives of energy policies in many countries. In this context, Keweenaw County or Michigan's northernmost County is placed as locked in an unreliable, unsustainable and particularly wasteful energy system. The cost of electricity is among the highest in comparison with the national average tariffs, extreme weather makes grid outages commonplace, and the vast majority of both electricity and heat is supplied by fossil fuels. This thesis project aims to identify the most appropriate strategies for the evaluation of alternative and more sustainable energy systems that can replace the current ones. The first phase of the thesis was based on quantifying the energy needs of the analyzed region. To do this, a bottom-up approach based on buildings archetypes has been adopted. At the beginning of the modelling process a new reference building stock, in which different building types and construction periods have been considered, has been designed. Once the energy loads of single buildings have been obtained, the results have been scaled at a community level. In total, three types of consumers have been addressed throughout the following study: individual households, businesses, and communities. System design configurations intended to satisfy requests in terms of lights and electric appliances, space heating and cooling, cooking and service hot water have been examined. Energy supply technologies such as solar photovoltaics (PV), storage, air source heat pumps (ASHP), ground source heat pumps (GSHP) and small-scale biomass combined heat and power (CHP) units are analyzed. Multiple electrification levels, from baseline to more advanced configurations where electricity represents the only energy carrier are evaluated. A different approach is adopted at community scale where different scenarios are discussed. Technical feasibility and economic viability of each electrification ...
Delivering sustainable energy transition : A techno-economic analysis on households, businesses and communities of the Keweenaw Peninsula
Longobardi, Francesca (Autor:in) / Padovani, Filippo (Autor:in)
01.01.2020
Hochschulschrift
Elektronische Ressource
Englisch
DDC:
690
DOAJ | 2021
|Sustainable Places: Delivering Adaptive Communities
Springer Verlag | 2017
|Funding and delivering infrastructure for sustainable communities
British Library Online Contents | 2005
|Excavations in frozen ground -- 1. Explosion tests in Keweenaw silt
Engineering Index Backfile | 1956
|Techno-economic assessment of university energy communities with on/off microgrid
BASE | 2022
|