Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
The present study aims at testing the influence of the urban morphology on the external weather conditions and the urban microclimate by treating quantitative aspects of the outdoor thermal comfort. This is based on a site investigation aims at studying the correlation between the geometry of the street, its orientation and the evolution of the physical variables: air temperature (Ta), Mean Radiant Temperature (MRT), Relative Humidity (RH), Wind speed (Ws).The measures were the subject of a campaign carried out in the urban fabric of the ksar of the red village in the wilaya of Biskra in Algeria. The objective is to define the most efficient urban geometry in term of summer thermal comfort by studying the real impacts of the urban form on the solar control and microclimatic conditions. The evaluation of the thermal comfort in these external spaces is carried out by analyzing physiologically equivalent temperature (PET) values calculated by Rayman Pro 2.1 software based on the measured microclimatic parameters.
The present study aims at testing the influence of the urban morphology on the external weather conditions and the urban microclimate by treating quantitative aspects of the outdoor thermal comfort. This is based on a site investigation aims at studying the correlation between the geometry of the street, its orientation and the evolution of the physical variables: air temperature (Ta), Mean Radiant Temperature (MRT), Relative Humidity (RH), Wind speed (Ws).The measures were the subject of a campaign carried out in the urban fabric of the ksar of the red village in the wilaya of Biskra in Algeria. The objective is to define the most efficient urban geometry in term of summer thermal comfort by studying the real impacts of the urban form on the solar control and microclimatic conditions. The evaluation of the thermal comfort in these external spaces is carried out by analyzing physiologically equivalent temperature (PET) values calculated by Rayman Pro 2.1 software based on the measured microclimatic parameters.
Experimental case study on the effect of the urban morphology on urban microclimate and outdoor thermal comfort
27.06.2018
oai:zenodo.org:1299262
Journal of Building Materials and Structures 5(1) 157-163
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
DDC:
710
BASE | 2018
|DOAJ | 2018
|Thermal comfort in outdoor spaces and urban canyon microclimate
Tema Archiv | 2013
|DOAJ | 2023
|BASE | 2019
|