Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Low RF-complexity massive MIMO systems: antenna selection and hybrid analog-digital beamforming ; Geringer RF-Komplexität Massive MIMO Systemen: Antennenselektion und Hybrid Analog-Digital Strahlformung
Wireless data traffic has been increased dramatically in the last decades, and will continue to increase in the future. As a consequence, the infrastructure of wireless communication systems needs to advance on the data capacity. Massive Multiple-Input Multiple-Output (MIMO) is a promising candidate technology to meet the demand. By scaling up the conventional MIMO by orders of magnitude number of \emph{active} antennas, a massive MIMO system can harvest considerable channel degrees of freedom to increase the spectral efficiency. However, increasing the number of \emph{active} antennas needs to increase both the numbers of Radio Frequency (RF) transceivers and antenna elements \emph{at the same rate}, which will increase the RF complexity and cost dramatically. It is known that the complexity and cost of antenna elements are usually much lower than that of RF transceivers, which motivates us to scale up MIMO by a lower increasing rate of the number of RF transceivers than that of antenna elements, resulting in so-called low RF-complexity massive MIMO systems. In this thesis, we study two types of low RF-complexity massive MIMO systems, i.e., massive MIMO antenna selection systems and massive MIMO hybrid analog-digital beamforming systems. Both systems use specific RF networks to bridge a massive number of antennas and a small number of RF transceivers, leading to signal dimension reduction from antennas to RF transceivers. The RF network used in antenna selection is referred to as RF switching network; while the RF network used in hybrid beamforming is referred to as Phase Shifting Network (PSN). Both RF networks have two types of architectures, i.e., full-array architecture and sub-array architecture. The latter has lower insertion loss, lower complexity and better scalability than the former, but at the price of performance degradation caused by connection constraint, which will be studied for both low RF-complexity systems in this thesis. In addition, a low RF-complexity PSN for the hybrid analog-digital ...
Low RF-complexity massive MIMO systems: antenna selection and hybrid analog-digital beamforming ; Geringer RF-Komplexität Massive MIMO Systemen: Antennenselektion und Hybrid Analog-Digital Strahlformung
Wireless data traffic has been increased dramatically in the last decades, and will continue to increase in the future. As a consequence, the infrastructure of wireless communication systems needs to advance on the data capacity. Massive Multiple-Input Multiple-Output (MIMO) is a promising candidate technology to meet the demand. By scaling up the conventional MIMO by orders of magnitude number of \emph{active} antennas, a massive MIMO system can harvest considerable channel degrees of freedom to increase the spectral efficiency. However, increasing the number of \emph{active} antennas needs to increase both the numbers of Radio Frequency (RF) transceivers and antenna elements \emph{at the same rate}, which will increase the RF complexity and cost dramatically. It is known that the complexity and cost of antenna elements are usually much lower than that of RF transceivers, which motivates us to scale up MIMO by a lower increasing rate of the number of RF transceivers than that of antenna elements, resulting in so-called low RF-complexity massive MIMO systems. In this thesis, we study two types of low RF-complexity massive MIMO systems, i.e., massive MIMO antenna selection systems and massive MIMO hybrid analog-digital beamforming systems. Both systems use specific RF networks to bridge a massive number of antennas and a small number of RF transceivers, leading to signal dimension reduction from antennas to RF transceivers. The RF network used in antenna selection is referred to as RF switching network; while the RF network used in hybrid beamforming is referred to as Phase Shifting Network (PSN). Both RF networks have two types of architectures, i.e., full-array architecture and sub-array architecture. The latter has lower insertion loss, lower complexity and better scalability than the former, but at the price of performance degradation caused by connection constraint, which will be studied for both low RF-complexity systems in this thesis. In addition, a low RF-complexity PSN for the hybrid analog-digital ...
Low RF-complexity massive MIMO systems: antenna selection and hybrid analog-digital beamforming ; Geringer RF-Komplexität Massive MIMO Systemen: Antennenselektion und Hybrid Analog-Digital Strahlformung
Gao, Yuan (Autor:in) / Solbach, Klaus
11.10.2017
Hochschulschrift
Elektronische Ressource
Englisch
Deep Learning-Based Channel Estimation and Beamforming Architecture for Massive MIMO Systems
Springer Verlag | 2024
|RIS‐Aided Massive MIMO Antennas*
Wiley | 2023
|Comparative Analysis of Data Detection Techniques for 5G Massive MIMO Systems
DOAJ | 2020
|