Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Towards a combined perfectly matching layer and infinite element formulation for unbounded elastic wave problems
This paper presents a framework for implementing a novel Perfectly Matching Layer and Infinite Element (PML+IE) combination boundary condition for unbounded elastic wave problems in the time domain. To achieve this, traditional hexahedral finite elements are used to model wave propagation in the inner domain and infinite element test functions are implemented in the exterior domain. Two alternative implementations of the PML formulation are studied: the case with constant stretching in all three dimensions and the case with spatially dependent stretching along a single direction. The absorbing ability of the PML+IE formulation is demonstrated by the favourable comparison with the reflection coefficient for a plane wave incident on the boundary achieved using a finite element only approach where stress free boundary conditions are implemented at the domain edge. Values for the PML stretching function parameters are selected based on the minimisation of the reflected wave amplitude and it is shown that the same reduction in reflection amplitude can be achieved using the PML+IE approach with approximately half of the number of elements required in the finite element only approach.
Towards a combined perfectly matching layer and infinite element formulation for unbounded elastic wave problems
This paper presents a framework for implementing a novel Perfectly Matching Layer and Infinite Element (PML+IE) combination boundary condition for unbounded elastic wave problems in the time domain. To achieve this, traditional hexahedral finite elements are used to model wave propagation in the inner domain and infinite element test functions are implemented in the exterior domain. Two alternative implementations of the PML formulation are studied: the case with constant stretching in all three dimensions and the case with spatially dependent stretching along a single direction. The absorbing ability of the PML+IE formulation is demonstrated by the favourable comparison with the reflection coefficient for a plane wave incident on the boundary achieved using a finite element only approach where stress free boundary conditions are implemented at the domain edge. Values for the PML stretching function parameters are selected based on the minimisation of the reflected wave amplitude and it is shown that the same reduction in reflection amplitude can be achieved using the PML+IE approach with approximately half of the number of elements required in the finite element only approach.
Towards a combined perfectly matching layer and infinite element formulation for unbounded elastic wave problems
Pettigrew, Joseph (Autor:in) / Mulholland, Anthony (Autor:in) / Tant, Katherine Margaret Mary (Autor:in)
15.09.2021
Pettigrew , J , Mulholland , A & Tant , K M M 2021 , ' Towards a combined perfectly matching layer and infinite element formulation for unbounded elastic wave problems ' , mathematics and mechanics of solids . https://doi.org/10.1177%2F10812865211040855
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
A new infinite element for unbounded water wave problems
Online Contents | 2003
|BASE | 2014
|Mapped infinite p-element for two-dimensional problems of unbounded domains
Online Contents | 2008
|Mapped infinite p-element for two-dimensional problems of unbounded domains
Online Contents | 2008
|