Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Experimental Investigation and Gaussian Process Emulation of Steel Skeleton Reinforced Concrete Behaviors in Split Hopkinson Pressure Bar Tests
This paper conducts split Hopkinson pressure bar (SHPB) experiments to investigate the dynamic compressive properties of steel skeleton reinforced concrete (SSRC) materials. The SSRC specimens with the different volume fraction of steel range from 0 to 2.94% are investigated by conducting quasi-static and SHPB compression tests, respectively. In SHPB tests, the strain rate achieves from 30 s-1 to 100 s-1. The concrete matrix for all SSRC specimens is mixed to obtain a compressive strength of 45 MPa. The influences of different steel skeleton arrangements on the compressive strength, energy absorption, dynamic strain-stress relations, and failure modes are discussed and compared. The most important indicator, dynamic increase factor (DIF) relations of SSRC for compressive strength and Young’s modulus are modelled probabilistically using Gaussian process (GP) emulation under the Bayesian framework. The corresponding performances are validated by individual prediction errors (IPE) diagnostics. The experimental results demonstrate that by adding certain types of steel skeleton into plain concrete, which gives a general better bonding property to concrete materials and increases the capacities of dynamic compressive strength, dynamic resistance and energy absorption.
Experimental Investigation and Gaussian Process Emulation of Steel Skeleton Reinforced Concrete Behaviors in Split Hopkinson Pressure Bar Tests
This paper conducts split Hopkinson pressure bar (SHPB) experiments to investigate the dynamic compressive properties of steel skeleton reinforced concrete (SSRC) materials. The SSRC specimens with the different volume fraction of steel range from 0 to 2.94% are investigated by conducting quasi-static and SHPB compression tests, respectively. In SHPB tests, the strain rate achieves from 30 s-1 to 100 s-1. The concrete matrix for all SSRC specimens is mixed to obtain a compressive strength of 45 MPa. The influences of different steel skeleton arrangements on the compressive strength, energy absorption, dynamic strain-stress relations, and failure modes are discussed and compared. The most important indicator, dynamic increase factor (DIF) relations of SSRC for compressive strength and Young’s modulus are modelled probabilistically using Gaussian process (GP) emulation under the Bayesian framework. The corresponding performances are validated by individual prediction errors (IPE) diagnostics. The experimental results demonstrate that by adding certain types of steel skeleton into plain concrete, which gives a general better bonding property to concrete materials and increases the capacities of dynamic compressive strength, dynamic resistance and energy absorption.
Experimental Investigation and Gaussian Process Emulation of Steel Skeleton Reinforced Concrete Behaviors in Split Hopkinson Pressure Bar Tests
Wang, Q-L (Autor:in) / Diaz De La O, F (Autor:in)
01.02.2020
International Journal of Structural and Civil Engineering Research , 9 (1) pp. 1-9. (2020)
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
DDC:
690
British Library Online Contents | 2013
|Impact Response of Steel Fiber-Reinforced Concrete Using a Split Hopkinson Pressure Bar
British Library Online Contents | 2004
|