Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Pile – Soil Interaction during Vibratory Sheet Pile Driving : a Full Scale Field Study
Urban construction sites require strict control of their environmental impact, which, for vibratory sheet pile driving, can include damage to nearby structures due to ground vibrations. However, the lack of knowledge concerning the generation of soil vibrations makes the prediction of ground vibration levels difficult. This MSc. thesis in particular, focuses on a crucial link in the vibration transfer chain: the sheet pile – soil interface, which is also one of the least documented. The aim of this thesis is first, to carry out a full-scale field test consisting in the monitoring of sheet pile and ground vibrations during sheet pile vibratory driving. And second, to analyze a selected portion of the collected data with focus on the sheet pile – soil vibration transfer. Both aspects of the thesis work aim, more generally, to contribute to the understanding of ground vibration generation under vibratory sheet pile driving. The full-scale field study was performed in Solna in May 2013. It consisted in the vibratory driving of seven sheet piles, out of which three were fitted with accelerometers. During the driving, ground vibrations were measured by accelerometers, the closest ones placed only 0.5 m from the sheet pile line. The design and installation of the soil instrumentation was innovative in as much as accelerometers were not only set on the ground surface but also at three different depths (~ 3 m, 5 m and 6 m). The analysis presented in this thesis is primarily a comparison between sheet pile vibrations and ground vibrations measured 0.5 m from the sheet pile line. The principal aspects considered in the comparison are: the influence of penetration through different soil layers, the sheet pile – soil vibration transfer efficiency, the frequency content of sheet pile and soil vibrations, and differences between toe- and shaft-generated vibrations. The main conclusions from this study are: Most of the vibration loss occurs in the near field: 90-99% of the sheet pile vibration magnitude was dispersed within ...
Pile – Soil Interaction during Vibratory Sheet Pile Driving : a Full Scale Field Study
Urban construction sites require strict control of their environmental impact, which, for vibratory sheet pile driving, can include damage to nearby structures due to ground vibrations. However, the lack of knowledge concerning the generation of soil vibrations makes the prediction of ground vibration levels difficult. This MSc. thesis in particular, focuses on a crucial link in the vibration transfer chain: the sheet pile – soil interface, which is also one of the least documented. The aim of this thesis is first, to carry out a full-scale field test consisting in the monitoring of sheet pile and ground vibrations during sheet pile vibratory driving. And second, to analyze a selected portion of the collected data with focus on the sheet pile – soil vibration transfer. Both aspects of the thesis work aim, more generally, to contribute to the understanding of ground vibration generation under vibratory sheet pile driving. The full-scale field study was performed in Solna in May 2013. It consisted in the vibratory driving of seven sheet piles, out of which three were fitted with accelerometers. During the driving, ground vibrations were measured by accelerometers, the closest ones placed only 0.5 m from the sheet pile line. The design and installation of the soil instrumentation was innovative in as much as accelerometers were not only set on the ground surface but also at three different depths (~ 3 m, 5 m and 6 m). The analysis presented in this thesis is primarily a comparison between sheet pile vibrations and ground vibrations measured 0.5 m from the sheet pile line. The principal aspects considered in the comparison are: the influence of penetration through different soil layers, the sheet pile – soil vibration transfer efficiency, the frequency content of sheet pile and soil vibrations, and differences between toe- and shaft-generated vibrations. The main conclusions from this study are: Most of the vibration loss occurs in the near field: 90-99% of the sheet pile vibration magnitude was dispersed within ...
Pile – Soil Interaction during Vibratory Sheet Pile Driving : a Full Scale Field Study
Guillement, Claire (Autor:in)
01.01.2013
13/05
Hochschulschrift
Elektronische Ressource
Englisch
Soil-structure interaction during pile vibratory driving
British Library Conference Proceedings | 1997
|3.41 Soil resistance during vibratory pile driving
British Library Conference Proceedings | 1995
|NTIS | 1963