Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Load distribution in curved composite concrete deck-steel multiple-spine box girder bridges.
An analytical modelling was performed using the finite-element method with the commercially available "ABAQUS" software. A shell element was used to model the concrete deck, steel webs, bottom flanges, and end-diaphragms. A three-dimensional beam element was adopted to model the top flanges, cross-bracings, and top chords. The multi-point-constraint option in the ABAQUS software was used between the shell nodes of the concrete deck and the beam element nodes of the steel top flanges, thus modelling the presence of shear connectors. Extensive parametric study, using the finite-element modelling, was conducted, in which 50 prototype bridges were analyzed to evaluate their load distribution factors for bending stress and shear under dead load and truck loading conditions. The span length of prototype bridges ranged from 20 to 100 meters, with two to four lanes. The number of steel boxes ranged from 2 to 4 in the case of two lanes, 3 to 5 in the case of three lanes, and 3 to 6 in the case of four lanes. The span-to-radius ratio was taken as 0, 0.4, 1, 1.4, and 2 for selected prototype bridges. The key parameters considered in the study were: number and stiffness of cross-bracings and top-chord systems, number of steel boxes, number of traffic lanes, bridge aspect ratio, and degree of curvature. (Abstract shortened by UMI.)Dept. of Civil and Environmental Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2000 .N67. Source: Masters Abstracts International, Volume: 40-03, page: 0748. Advisers: J. B. Kennedy; K. M. Sennah. Thesis (M.Sc.)--University of Windsor (Canada), 2001.
Load distribution in curved composite concrete deck-steel multiple-spine box girder bridges.
An analytical modelling was performed using the finite-element method with the commercially available "ABAQUS" software. A shell element was used to model the concrete deck, steel webs, bottom flanges, and end-diaphragms. A three-dimensional beam element was adopted to model the top flanges, cross-bracings, and top chords. The multi-point-constraint option in the ABAQUS software was used between the shell nodes of the concrete deck and the beam element nodes of the steel top flanges, thus modelling the presence of shear connectors. Extensive parametric study, using the finite-element modelling, was conducted, in which 50 prototype bridges were analyzed to evaluate their load distribution factors for bending stress and shear under dead load and truck loading conditions. The span length of prototype bridges ranged from 20 to 100 meters, with two to four lanes. The number of steel boxes ranged from 2 to 4 in the case of two lanes, 3 to 5 in the case of three lanes, and 3 to 6 in the case of four lanes. The span-to-radius ratio was taken as 0, 0.4, 1, 1.4, and 2 for selected prototype bridges. The key parameters considered in the study were: number and stiffness of cross-bracings and top-chord systems, number of steel boxes, number of traffic lanes, bridge aspect ratio, and degree of curvature. (Abstract shortened by UMI.)Dept. of Civil and Environmental Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2000 .N67. Source: Masters Abstracts International, Volume: 40-03, page: 0748. Advisers: J. B. Kennedy; K. M. Sennah. Thesis (M.Sc.)--University of Windsor (Canada), 2001.
Load distribution in curved composite concrete deck-steel multiple-spine box girder bridges.
Nour, Said Ibrahim. (Autor:in)
01.01.2001
Electronic Theses and Dissertations
Hochschulschrift
Elektronische Ressource
Englisch
DDC:
690
Steel-concrete composite deck for PSC girder bridges
Springer Verlag | 2005
|Lateral Load Distribution in Curved Steel I-Girder Bridges
Online Contents | 2005
|Structural performance of steel-concrete composite deck for steel-box girder bridges
Springer Verlag | 2006
|Live Load Distribution in Prestressed Concrete Girder Bridges with Curved Slab
Trans Tech Publications | 2013
|Live Load Distribution in Prestressed Concrete Girder Bridges with Curved Slab
Tema Archiv | 2013
|