Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Vegetation Classification and Evaluation of Yancheng Coastal Wetlands Based on Random Forest Algorithm from Sentinel-2 Images
The identification of wetland vegetation is essential for environmental protection and management, as well as for monitoring wetlands’ health and assessing ecosystem services. However, some limitations on vegetation classification may be related to remote sensing technology, confusion between plant species, and challenges related to inadequate data accuracy. In this paper, vegetation classification in the Yancheng Coastal Wetlands is studied and evaluated from Sentinel-2 images based on a random forest algorithm. Based on consistent time series from remote sensing observations, the characteristic patterns of the Yancheng Coastal Wetlands were better captured. Firstly, the spectral features, vegetation indices, and phenological characteristics were extracted from remote sensing images, and classification products were obtained by constructing a dense time series using a dataset based on Sentinel-2 images in Google Earth Engine (GEE). Then, remote sensing classification products based on the random forest machine learning algorithm were obtained, with an overall accuracy of 95.64% and kappa coefficient of 0.94. Four indicators (POP, SOS, NDVIre, and B12) were the main contributors to the importance of the weight analysis of all features. Comparative experiments were conducted with different classification features. The results show that the method proposed in this paper has better classification.
Vegetation Classification and Evaluation of Yancheng Coastal Wetlands Based on Random Forest Algorithm from Sentinel-2 Images
The identification of wetland vegetation is essential for environmental protection and management, as well as for monitoring wetlands’ health and assessing ecosystem services. However, some limitations on vegetation classification may be related to remote sensing technology, confusion between plant species, and challenges related to inadequate data accuracy. In this paper, vegetation classification in the Yancheng Coastal Wetlands is studied and evaluated from Sentinel-2 images based on a random forest algorithm. Based on consistent time series from remote sensing observations, the characteristic patterns of the Yancheng Coastal Wetlands were better captured. Firstly, the spectral features, vegetation indices, and phenological characteristics were extracted from remote sensing images, and classification products were obtained by constructing a dense time series using a dataset based on Sentinel-2 images in Google Earth Engine (GEE). Then, remote sensing classification products based on the random forest machine learning algorithm were obtained, with an overall accuracy of 95.64% and kappa coefficient of 0.94. Four indicators (POP, SOS, NDVIre, and B12) were the main contributors to the importance of the weight analysis of all features. Comparative experiments were conducted with different classification features. The results show that the method proposed in this paper has better classification.
Vegetation Classification and Evaluation of Yancheng Coastal Wetlands Based on Random Forest Algorithm from Sentinel-2 Images
Yongjun Wang (Autor:in) / Shuanggen Jin (Autor:in) / Gino Dardanelli (Autor:in) / Yongjun Wang / Shuanggen Jin / Gino Dardanelli
22.03.2024
doi:10.3390/rs16071124
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
DDC:
710
Imitation of Nature, Philosophy of Beautiful Yancheng Construction
Trans Tech Publications | 2014
|Forest Tree Species Classification Based on Sentinel-2 Images and Auxiliary Data
DOAJ | 2022
|DOAJ | 2021
|