Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Random hypergraphs for hashing-based data structures
This thesis concerns dictionaries and related data structures that rely on providing several random possibilities for storing each key. Imagine information on a set S of m = |S| keys should be stored in n memory locations, indexed by [n] = {1,…,n}. Each object x [ELEMENT OF] S is assigned a small set e(x) [SUBSET OF OR EQUAL TO] [n] of locations by a random hash function, independent of other objects. Information on x must then be stored in the locations from e(x) only. It is possible that too many objects compete for the same locations, in particular if the load c = m/n is high. Successfully storing all information may then be impossible. For most distributions of e(x), however, success or failure can be predicted very reliably, since the success probability is close to 1 for loads c less than a certain load threshold c^* and close to 0 for loads greater than this load threshold. We mainly consider two types of data structures: • A cuckoo hash table is a dictionary data structure where each key x [ELEMENT OF] S is stored together with an associated value f(x) in one of the memory locations with an index from e(x). The distribution of e(x) is controlled by the hashing scheme. We analyse three known hashing schemes, and determine their exact load thresholds. The schemes are unaligned blocks, double hashing and a scheme for dynamically growing key sets. • A retrieval data structure also stores a value f(x) for each x [ELEMENT OF] S. This time, the values stored in the memory locations from e(x) must satisfy a linear equation that characterises the value f(x). The resulting data structure is extremely compact, but unusual. It cannot answer questions of the form “is y [ELEMENT OF] S?”. Given a key y it returns a value z. If y [ELEMENT OF] S, then z = f(y) is guaranteed, otherwise z may be an arbitrary value. We consider two new hashing schemes, where the elements of e(x) are contained in one or two contiguous blocks. This yields good access times on a word RAM and high cache efficiency. An important question is ...
Random hypergraphs for hashing-based data structures
This thesis concerns dictionaries and related data structures that rely on providing several random possibilities for storing each key. Imagine information on a set S of m = |S| keys should be stored in n memory locations, indexed by [n] = {1,…,n}. Each object x [ELEMENT OF] S is assigned a small set e(x) [SUBSET OF OR EQUAL TO] [n] of locations by a random hash function, independent of other objects. Information on x must then be stored in the locations from e(x) only. It is possible that too many objects compete for the same locations, in particular if the load c = m/n is high. Successfully storing all information may then be impossible. For most distributions of e(x), however, success or failure can be predicted very reliably, since the success probability is close to 1 for loads c less than a certain load threshold c^* and close to 0 for loads greater than this load threshold. We mainly consider two types of data structures: • A cuckoo hash table is a dictionary data structure where each key x [ELEMENT OF] S is stored together with an associated value f(x) in one of the memory locations with an index from e(x). The distribution of e(x) is controlled by the hashing scheme. We analyse three known hashing schemes, and determine their exact load thresholds. The schemes are unaligned blocks, double hashing and a scheme for dynamically growing key sets. • A retrieval data structure also stores a value f(x) for each x [ELEMENT OF] S. This time, the values stored in the memory locations from e(x) must satisfy a linear equation that characterises the value f(x). The resulting data structure is extremely compact, but unusual. It cannot answer questions of the form “is y [ELEMENT OF] S?”. Given a key y it returns a value z. If y [ELEMENT OF] S, then z = f(y) is guaranteed, otherwise z may be an arbitrary value. We consider two new hashing schemes, where the elements of e(x) are contained in one or two contiguous blocks. This yields good access times on a word RAM and high cache efficiency. An important question is ...
Random hypergraphs for hashing-based data structures
27.11.2020
Hochschulschrift
Elektronische Ressource
Englisch
Equitable colorings of nonuniform hypergraphs
British Library Online Contents | 2016
|2-Colorings of uniform hypergraphs
British Library Online Contents | 2016
|Spatial hashing based contact detection for numerical manifold method
Online Contents | 2014
|Spatial hashing based contact detection for numerical manifold method
Taylor & Francis Verlag | 2014
|Combinatorial extremum problems for 2-colorings of hypergraphs
British Library Online Contents | 2011
|