Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
The detection of fraudulent financial statements using textual and financial data
Das Vertrauen in die Korrektheit veröffentlichter Jahresabschlüsse bildet ein Fundament für funktionierende Kapitalmärkte. Prominente Bilanzskandale erschüttern immer wieder das Vertrauen der Marktteilnehmer in die Glaubwürdigkeit der veröffentlichten Informationen und führen dadurch zu einer ineffizienten Ressourcenallokation. Zuverlässige, automatisierte Betrugserkennungssysteme, die auf öffentlich zugänglichen Daten basieren, können dazu beitragen, die Prüfungsressourcen effizienter zuzuweisen und stärken die Resilienz der Kapitalmärkte indem Marktteilnehmer stärker vor Bilanzbetrug geschützt werden. In dieser Studie steht die Entwicklung eines Betrugserkennungsmodells im Vordergrund, welches aus textuelle und numerische Bestandteile von Jahresabschlüssen typische Muster für betrügerische Manipulationen extrahiert und diese in einem umfangreichen Aufdeckungsmodell vereint. Die Untersuchung stützt sich dabei auf einen umfassenden methodischen Ansatz, welcher wichtige Probleme und Fragestellungen im Prozess der Erstellung, Erweiterung und Testung der Modelle aufgreift. Die Analyse der textuellen Bestandteile der Jahresabschlüsse wird dabei auf Basis von Mehrwortphrasen durchgeführt, einschließlich einer umfassenden Sprachstandardisierung, um erzählerische Besonderheiten und Kontext besser verarbeiten zu können. Weiterhin wird die Musterextraktion um erfolgreiche Finanzprädiktoren aus den Rechenwerken wie Bilanz oder Gewinn- und Verlustrechnung angereichert und somit der Jahresabschluss in seiner Breite erfasst und möglichst viele Hinweise identifiziert. Die Ergebnisse deuten auf eine zuverlässige und robuste Erkennungsleistung über einen Zeitraum von 15 Jahren hin. Darüber hinaus implizieren die Ergebnisse, dass textbasierte Prädiktoren den Finanzkennzahlen überlegen sind und eine Kombination aus beiden erforderlich ist, um die bestmöglichen Ergebnisse zu erzielen. Außerdem zeigen textbasierte Prädiktoren im Laufe der Zeit eine starke Variation, was die Wichtigkeit einer regelmäßigen Aktualisierung der Modelle ...
The detection of fraudulent financial statements using textual and financial data
Das Vertrauen in die Korrektheit veröffentlichter Jahresabschlüsse bildet ein Fundament für funktionierende Kapitalmärkte. Prominente Bilanzskandale erschüttern immer wieder das Vertrauen der Marktteilnehmer in die Glaubwürdigkeit der veröffentlichten Informationen und führen dadurch zu einer ineffizienten Ressourcenallokation. Zuverlässige, automatisierte Betrugserkennungssysteme, die auf öffentlich zugänglichen Daten basieren, können dazu beitragen, die Prüfungsressourcen effizienter zuzuweisen und stärken die Resilienz der Kapitalmärkte indem Marktteilnehmer stärker vor Bilanzbetrug geschützt werden. In dieser Studie steht die Entwicklung eines Betrugserkennungsmodells im Vordergrund, welches aus textuelle und numerische Bestandteile von Jahresabschlüssen typische Muster für betrügerische Manipulationen extrahiert und diese in einem umfangreichen Aufdeckungsmodell vereint. Die Untersuchung stützt sich dabei auf einen umfassenden methodischen Ansatz, welcher wichtige Probleme und Fragestellungen im Prozess der Erstellung, Erweiterung und Testung der Modelle aufgreift. Die Analyse der textuellen Bestandteile der Jahresabschlüsse wird dabei auf Basis von Mehrwortphrasen durchgeführt, einschließlich einer umfassenden Sprachstandardisierung, um erzählerische Besonderheiten und Kontext besser verarbeiten zu können. Weiterhin wird die Musterextraktion um erfolgreiche Finanzprädiktoren aus den Rechenwerken wie Bilanz oder Gewinn- und Verlustrechnung angereichert und somit der Jahresabschluss in seiner Breite erfasst und möglichst viele Hinweise identifiziert. Die Ergebnisse deuten auf eine zuverlässige und robuste Erkennungsleistung über einen Zeitraum von 15 Jahren hin. Darüber hinaus implizieren die Ergebnisse, dass textbasierte Prädiktoren den Finanzkennzahlen überlegen sind und eine Kombination aus beiden erforderlich ist, um die bestmöglichen Ergebnisse zu erzielen. Außerdem zeigen textbasierte Prädiktoren im Laufe der Zeit eine starke Variation, was die Wichtigkeit einer regelmäßigen Aktualisierung der Modelle ...
The detection of fraudulent financial statements using textual and financial data
Gleichmann, Tobias (Autor:in) / Grüning, Michael / Werner, Jörg R.
06.11.2020
Hochschulschrift
Elektronische Ressource
Englisch
Wiley | 2020
|Helsinki: 2002 Financial Statements
British Library Online Contents | 2003
The relationship between knowledge-based economy and fraudulent financial reporting
Emerald Group Publishing | 2021
|ASC 205 PRESENTATION OF FINANCIAL STATEMENTS
Wiley | 2015
|