Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Characterising the Dynamic Response of A Deformed Masonry Arch Rail Bridge Using Monitoring and Remote Sensing
Numerous masonry arch bridges in the UK have significant deformations and are carrying traffic and rail loads. Often the structural assessment of these bridges is carried out by evaluating their ultimate limit state with little consideration for deformed geometry and continued degradation under service loads. This paper summarises recent work to assess a Victorian masonry arch rail bridge using novel sensing technologies. The objectives were to quantify the current damage state, understand the three-dimensional dynamic response under service loads, and observe continued crack propagation. Initially, to determine the current geometry, a laser scanning survey was carried out. A comparison between ideal geometric shapes and the deformed geometry quantifies the differential settlement experienced by the bridge piers. With accompanying structural analyses, these settlements are utilized to evaluate the current damage state of the bridge. Then, a deployment of quasi-distributed Fibre Bragg Grating (FBG) sensors and distributed fibre optic sensors is described. FBG sensors are utilized to explore the dynamic response under service loading, while only the distributed strain sensors are utilized to evaluate the long term crack propagation. Preliminary monitoring demonstrates how the dynamic response mechanism engages with the existing cracks and quantifies the diurnal and seasonal changes in crack opening.
Characterising the Dynamic Response of A Deformed Masonry Arch Rail Bridge Using Monitoring and Remote Sensing
Numerous masonry arch bridges in the UK have significant deformations and are carrying traffic and rail loads. Often the structural assessment of these bridges is carried out by evaluating their ultimate limit state with little consideration for deformed geometry and continued degradation under service loads. This paper summarises recent work to assess a Victorian masonry arch rail bridge using novel sensing technologies. The objectives were to quantify the current damage state, understand the three-dimensional dynamic response under service loads, and observe continued crack propagation. Initially, to determine the current geometry, a laser scanning survey was carried out. A comparison between ideal geometric shapes and the deformed geometry quantifies the differential settlement experienced by the bridge piers. With accompanying structural analyses, these settlements are utilized to evaluate the current damage state of the bridge. Then, a deployment of quasi-distributed Fibre Bragg Grating (FBG) sensors and distributed fibre optic sensors is described. FBG sensors are utilized to explore the dynamic response under service loading, while only the distributed strain sensors are utilized to evaluate the long term crack propagation. Preliminary monitoring demonstrates how the dynamic response mechanism engages with the existing cracks and quantifies the diurnal and seasonal changes in crack opening.
Characterising the Dynamic Response of A Deformed Masonry Arch Rail Bridge Using Monitoring and Remote Sensing
Aldaikh, H. (Autor:in) / Acikgoz, Sinan (Autor:in) / DeJong, Matthew (Autor:in) / Kechavarzi, Cedric (Autor:in) / Soga, Kenichi (Autor:in)
01.01.2016
Aldaikh , H , Acikgoz , S , DeJong , M , Kechavarzi , C & Soga , K 2016 , ' Characterising the Dynamic Response of A Deformed Masonry Arch Rail Bridge Using Monitoring and Remote Sensing ' Paper presented at European Congress on Computational Methods in Applied Sciences and Engineering , Crete Island , Greece , 5/06/16 - 10/06/16 , .
Aufsatz (Konferenz)
Elektronische Ressource
Englisch
DDC:
621
Dynamic Monitoring of a Masonry Arch Rail Bridge Using a Distributed Fiber Optic Sensing System
BASE | 2024
|Engineering Index Backfile | 1895
Masonry arch bridge assessment
British Library Online Contents | 2008
Monitoring masonry arch bridge response to traffic loading using acoustic emission techniques
British Library Conference Proceedings | 2007
|Remote monitoring and analysis of a multi-arch masonry bridge with wide cracks
British Library Conference Proceedings | 1995
|