Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Structural behaviour of ferrocement channels slabs for low cost housing
This paper presents a new pre cast U-shape ferrocement forms reinforced with various types of metallic and non-metallic mesh reinforcement. This research was designed to investigate the feasibility and effectiveness of employing various types of reinforcing meshes in the construction of structural slabs incorporating permanent U-shape ferrocement forms as a viable alternative for conventional reinforced concrete slabs. Fiber glass meshes reinforcement was used for durability and protection against corrosion of reinforcing steel. To accomplish this objective, an experimental program was conducted. The experimental program comprised casting and testing ten slabs having the total dimensions of 500x100x2500 mm incorporating 40 mm thick U-shape permanent ferrocement forms. Series A consists of two conventionally reinforced concrete slabs were cast and tested and used as control slab without fibers and with fibers, volume fraction, 2.05 % and 2.177 %. Series B comprises of two slabs reinforced with one and two layers of expanded steel mesh, volume fraction 2.09 and 2.42% respectively. Series C comprises two slabs reinforced with two and four layers of welded galvanized steel mesh, having volume fraction 2.05 and 2.189% respectively. Series D Consists of two slabs reinforced with one layer and two layers of fiber glass meshes, having volume fraction 2.107 and 2.277% respectively. Series E comprises two slabs reinforced with 2 layers expanded steel mesh and one layer expanded steel mesh, having volume fraction 1.357 and 2.750 % respectively. The test specimens were tested as simple slabs under four-line loadings condition on a span of 2300mm. The performance of the test slabs in terms of strength, stiffness, strains, cracking behavior, ductility, and energy absorption properties was investigated. The behavior of the developed slabs was compared to that of the control slabs. The experimental results showed that high ultimate and serviceability loads, better crack resistance control, high ductility, and good energy absorption properties could be achieved by using the proposed slabs and low cost compared with control specimen.
Structural behaviour of ferrocement channels slabs for low cost housing
This paper presents a new pre cast U-shape ferrocement forms reinforced with various types of metallic and non-metallic mesh reinforcement. This research was designed to investigate the feasibility and effectiveness of employing various types of reinforcing meshes in the construction of structural slabs incorporating permanent U-shape ferrocement forms as a viable alternative for conventional reinforced concrete slabs. Fiber glass meshes reinforcement was used for durability and protection against corrosion of reinforcing steel. To accomplish this objective, an experimental program was conducted. The experimental program comprised casting and testing ten slabs having the total dimensions of 500x100x2500 mm incorporating 40 mm thick U-shape permanent ferrocement forms. Series A consists of two conventionally reinforced concrete slabs were cast and tested and used as control slab without fibers and with fibers, volume fraction, 2.05 % and 2.177 %. Series B comprises of two slabs reinforced with one and two layers of expanded steel mesh, volume fraction 2.09 and 2.42% respectively. Series C comprises two slabs reinforced with two and four layers of welded galvanized steel mesh, having volume fraction 2.05 and 2.189% respectively. Series D Consists of two slabs reinforced with one layer and two layers of fiber glass meshes, having volume fraction 2.107 and 2.277% respectively. Series E comprises two slabs reinforced with 2 layers expanded steel mesh and one layer expanded steel mesh, having volume fraction 1.357 and 2.750 % respectively. The test specimens were tested as simple slabs under four-line loadings condition on a span of 2300mm. The performance of the test slabs in terms of strength, stiffness, strains, cracking behavior, ductility, and energy absorption properties was investigated. The behavior of the developed slabs was compared to that of the control slabs. The experimental results showed that high ultimate and serviceability loads, better crack resistance control, high ductility, and good energy absorption properties could be achieved by using the proposed slabs and low cost compared with control specimen.
Structural behaviour of ferrocement channels slabs for low cost housing
Shaheen, Yousry B. I. (Autor:in) / Eltehawy, Essam A. (Autor:in)
01.07.2017
doi:10.20528/cjcrl.2017.02.002
Challenge Journal of Concrete Research Letters; Vol 8, No 2 (2017); 48-64 ; 2548-0928
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
DDC:
690
Behaviour of Bamboo Based Ferrocement Slabs for Low Cost Housing
British Library Conference Proceedings | 2008
|The structural behaviour of HCWA ferrocement-reinforced concrete composite slabs
British Library Online Contents | 2013
|The structural behaviour of HCWA ferrocement–reinforced concrete composite slabs
Tema Archiv | 2013
|Behaviour of Ferrocement Slabs Under Impact Loading
British Library Conference Proceedings | 2003
|Ferrocement Low Cost Rural Housing
British Library Conference Proceedings | 1994
|