Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Two-stage coordinated operational strategy for distributed energy resources considering wind power curtailment penalty cost
The concept of virtual power plant (VPP) has been proposed to facilitate the integration of distributed renewable energy. VPP behaves similar to a single entity that aggregates a collection of distributed energy resources (DERs) such as distributed generators, storage devices, flexible loads, etc., so that the aggregated power outputs can be flexibly dispatched and traded in electricity markets. This paper presents an optimal scheduling model for VPP participating in day-ahead (DA) and real-time (RT) markets. In the DA market, VPP aims to maximize the expected profit and reduce the risk in relation to uncertainties. The risk is measured by a risk factor based on the mean-variance Markowitz theory. In the RT market, VPP aims to minimize the imbalance cost and wind power curtailment by adjusting the scheduling of DERs in its portfolio. In case studies, the benefits (e.g., surplus profit and reduced wind power curtailment) of aggregated VPP operation are assessed. Moreover, we have investigated how these benefits are affected by different risk-aversion levels and uncertainty levels. According to the simulation results, the aggregated VPP scheduling approach can effectively help the integration of wind power, mitigate the impact of uncertainties, and reduce the cost of risk-aversion.
Two-stage coordinated operational strategy for distributed energy resources considering wind power curtailment penalty cost
The concept of virtual power plant (VPP) has been proposed to facilitate the integration of distributed renewable energy. VPP behaves similar to a single entity that aggregates a collection of distributed energy resources (DERs) such as distributed generators, storage devices, flexible loads, etc., so that the aggregated power outputs can be flexibly dispatched and traded in electricity markets. This paper presents an optimal scheduling model for VPP participating in day-ahead (DA) and real-time (RT) markets. In the DA market, VPP aims to maximize the expected profit and reduce the risk in relation to uncertainties. The risk is measured by a risk factor based on the mean-variance Markowitz theory. In the RT market, VPP aims to minimize the imbalance cost and wind power curtailment by adjusting the scheduling of DERs in its portfolio. In case studies, the benefits (e.g., surplus profit and reduced wind power curtailment) of aggregated VPP operation are assessed. Moreover, we have investigated how these benefits are affected by different risk-aversion levels and uncertainty levels. According to the simulation results, the aggregated VPP scheduling approach can effectively help the integration of wind power, mitigate the impact of uncertainties, and reduce the cost of risk-aversion.
Two-stage coordinated operational strategy for distributed energy resources considering wind power curtailment penalty cost
Qiu, Jing (Autor:in) / Zhao, Junhua (Autor:in) / Wang, Dongxiao (Autor:in) / Zheng, Yu (Autor:in) / The University of Newcastle. Faculty of Engineering & Built Environment, School of Electrical Engineering and Computer Science
01.01.2017
ISSN:1996-1073
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
DDC:
690
Coordinated operation of wind power and other resources considering power system requirements
American Institute of Physics | 2015
|BASE | 2022
|