Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Burning dynamics and in-depth flame spread of wood cribs in large compartment fires
Wood cribs pervade the fire research literature as the chosen fuel load for testing within the built environment. As such, the underpinning knowledge of fire behaviour in compartments was developed from experiments using wood cribs in small compartments. Despite the apparent incomparability of porous fuel-beds such as cribs to real solid fuels in the built environment, the role of the fuel mass transfer number (“B-Number”) in defining the compartment fire dynamics has received little attention. In the case of large open-plan compartments, the burning processes are strongly dependant on the relationship of the fuel nature and compartment geometry. To address these limitations, the physical processes in-depth and external to a spreading wood crib fire in a compartment are examined. A theory to couple these processes to a compartment is proposed and analogised into the classical “Emmons problem”, leading to a definition of a total mass transfer number for a wood crib. Comparing the theory against data from a large-scale experiment shows that the wood crib approximates steady-state burning in two regimes: a fuel-bed-controlled regime and a momentum-controlled regime. The fuel-bed-controlled regime occurs when the burning and spread rates are governed by the processes internal to the crib, and the fire behaviour is therefore defined by the crib geometry. This regime is characterised by a fire that travels or grows slowly, with small external heat fluxes. The momentum-controlled regime occurs when the fire is fully-developed and the external heat fluxes are very large. Burning rates are controlled by the residence time, with the compartment fire dynamics defined by complex transport processes associated with the momentum-driven flows external to the crib. Transitions from the fuel-bed-controlled regime to the momentum-controlled regime are driven by accelerations in the flame spread rate along the surface of the crib leading to additional energy input mechanism that is used to raise the in-depth flame spread rate of ...
Burning dynamics and in-depth flame spread of wood cribs in large compartment fires
Wood cribs pervade the fire research literature as the chosen fuel load for testing within the built environment. As such, the underpinning knowledge of fire behaviour in compartments was developed from experiments using wood cribs in small compartments. Despite the apparent incomparability of porous fuel-beds such as cribs to real solid fuels in the built environment, the role of the fuel mass transfer number (“B-Number”) in defining the compartment fire dynamics has received little attention. In the case of large open-plan compartments, the burning processes are strongly dependant on the relationship of the fuel nature and compartment geometry. To address these limitations, the physical processes in-depth and external to a spreading wood crib fire in a compartment are examined. A theory to couple these processes to a compartment is proposed and analogised into the classical “Emmons problem”, leading to a definition of a total mass transfer number for a wood crib. Comparing the theory against data from a large-scale experiment shows that the wood crib approximates steady-state burning in two regimes: a fuel-bed-controlled regime and a momentum-controlled regime. The fuel-bed-controlled regime occurs when the burning and spread rates are governed by the processes internal to the crib, and the fire behaviour is therefore defined by the crib geometry. This regime is characterised by a fire that travels or grows slowly, with small external heat fluxes. The momentum-controlled regime occurs when the fire is fully-developed and the external heat fluxes are very large. Burning rates are controlled by the residence time, with the compartment fire dynamics defined by complex transport processes associated with the momentum-driven flows external to the crib. Transitions from the fuel-bed-controlled regime to the momentum-controlled regime are driven by accelerations in the flame spread rate along the surface of the crib leading to additional energy input mechanism that is used to raise the in-depth flame spread rate of ...
Burning dynamics and in-depth flame spread of wood cribs in large compartment fires
Gupta, V (Autor:in) / Torero, JL (Autor:in) / Hidalgo, JP (Autor:in)
01.06.2021
Combustion and Flame , 228 pp. 42-56. (2021)
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
DDC:
690
An investigation on compartment fires with plywood cribs
British Library Online Contents | 2017
|An investigation on compartment fires with plywood cribs
Online Contents | 2017
|Burning Rates of Wood Cribs with Implications for Wildland Fires
British Library Online Contents | 2016
|An investigation on compartment fires with plywood cribs
Wiley | 2017
|Time Curve of heat release for compartment fires with fuel of wooden cribs
UB Braunschweig | 1974
|