Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Impact loading on concrete slabs : Experimental tests and numerical simulations
In this report, the load capacity of concrete slabs subjected to concentrated loads is studied, considering both the static load capacity and the response due to impact of a falling mass. The purpose of the study is to gain more knowledge on the static and dynamic behaviour of the slabs and to use that knowledge in the assessment of the load capacity of inner lining systems in tunnels. The methodology involves experimental testing of a series of slabs, validation of numerical models and simulating the response of the inner lining system. A total of 18 slabs were manufactured, consisting of shotcrete and reinforcement mesh. Some of the slabs also included steel fibre reinforced concrete (SRFC). The size of the slabs were 1.75×1.75×0.12 m, suspended in four hangers #1.2 m and loaded centric on an area of 0.2×0.2 m. In addition, a series of core samples and beams were cut from two of the slabs for material testing and verification of numerical models. From the static load tests of the slabs, the load at cracking was obtained at 50 – 60 kN with a vertical midpoint displacement of 0.6 – 1.0 mm. The ultimate load ranged from 60 – 80 kN. The slabs showed significant ductility with a peak displacement of about 70 – 80 mm at post-failure. All slabs showed a two-way flexural failure. The concrete cover was in average 30 mm, measured from the compressive side, resulting in little difference between the crack load and the ultimate load. A vertical displacement of about 1 – 2 mm was required to obtain a crack width of 0.2 mm. Three slabs with only SRFC were tested until static failure, the ultimate load ranged from 85 – 90 kN but with less ductility compared to the slabs with rebar mesh. Impact load tests were performed using a steel mass of 600 kg. The free fall height was varied from 1 – 2 m. The peak impact load varied from 200 – 250 kN, without any clear correlation with the height. The corresponding impulse load varied from 4.0 – 5.5 kNs with a clear correlation to the height. All slabs subjected to impact load showed a ...
Impact loading on concrete slabs : Experimental tests and numerical simulations
In this report, the load capacity of concrete slabs subjected to concentrated loads is studied, considering both the static load capacity and the response due to impact of a falling mass. The purpose of the study is to gain more knowledge on the static and dynamic behaviour of the slabs and to use that knowledge in the assessment of the load capacity of inner lining systems in tunnels. The methodology involves experimental testing of a series of slabs, validation of numerical models and simulating the response of the inner lining system. A total of 18 slabs were manufactured, consisting of shotcrete and reinforcement mesh. Some of the slabs also included steel fibre reinforced concrete (SRFC). The size of the slabs were 1.75×1.75×0.12 m, suspended in four hangers #1.2 m and loaded centric on an area of 0.2×0.2 m. In addition, a series of core samples and beams were cut from two of the slabs for material testing and verification of numerical models. From the static load tests of the slabs, the load at cracking was obtained at 50 – 60 kN with a vertical midpoint displacement of 0.6 – 1.0 mm. The ultimate load ranged from 60 – 80 kN. The slabs showed significant ductility with a peak displacement of about 70 – 80 mm at post-failure. All slabs showed a two-way flexural failure. The concrete cover was in average 30 mm, measured from the compressive side, resulting in little difference between the crack load and the ultimate load. A vertical displacement of about 1 – 2 mm was required to obtain a crack width of 0.2 mm. Three slabs with only SRFC were tested until static failure, the ultimate load ranged from 85 – 90 kN but with less ductility compared to the slabs with rebar mesh. Impact load tests were performed using a steel mass of 600 kg. The free fall height was varied from 1 – 2 m. The peak impact load varied from 200 – 250 kN, without any clear correlation with the height. The corresponding impulse load varied from 4.0 – 5.5 kNs with a clear correlation to the height. All slabs subjected to impact load showed a ...
Impact loading on concrete slabs : Experimental tests and numerical simulations
Andersson, Andreas (Autor:in)
01.01.2014
153
Paper
Elektronische Ressource
Englisch
Impact Loading of Concrete Slabs
British Library Conference Proceedings | 2014
|Tests of reinforced concrete slabs under concentrated loading
Engineering Index Backfile | 1913
Loading tests on concrete slabs reinforced with FRP grids
British Library Conference Proceedings | 1995
|