Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Model Uncertainty in Fire Safety Engineering
Summary: Traditionally, fire safety has often been addressed with methods based on prescriptive recommendations. The opportunity to use an alternative analytical approach has led to the development of fire safety engineering, beginning with structural fire safety design in the 1960's and today including fire safety design and fire risk analysis in general. The prediction of reality using model calculations and dealing with the errors and uncertainties associated with the calculations are two key tasks for a professional practitioner using an analytical approach. In fire safety engineering, smoke transport models are commonly used to predict the conditions caused by a fire. This is done despite the fact that knowledge of the errors and uncertainties associated with the models is lacking and there are insufficient means available to take them into account. The licentiate dissertation "Model Uncertainty in Fire Safety Engineering" is part of the project "Design Based on Calculated Risk", which is financed by The Swedish Fire Research Board (BRANDFORSK) and The Development Fund of the Swedish Construction Industry (SBUF). The objective of this part of the project was to evaluate the predictive capability of smoke transport models quantitatively, in terms of model error and uncertainty in the model error. The result is an adjustment model that can be used to take model error into account in future model predictions and thereby increase the predictive capability of the model. To exemplify the results of this study, model predictions of the smoke temperature and smoke layer height by the computer model CFAST 2.0 are evaluated by means of multi-scenario analysis. A single-scenario analysis is also carried out on smoke temperature predictions by the models FAST 3.1, FASTLite 1.0 and FPETool 3.2. The analysis shows that the predictive capability of the two-zone models can be questioned and that the model results should not be used uncritically, without consideration of the model error. In the analysis of the scenarios it ...
Model Uncertainty in Fire Safety Engineering
Summary: Traditionally, fire safety has often been addressed with methods based on prescriptive recommendations. The opportunity to use an alternative analytical approach has led to the development of fire safety engineering, beginning with structural fire safety design in the 1960's and today including fire safety design and fire risk analysis in general. The prediction of reality using model calculations and dealing with the errors and uncertainties associated with the calculations are two key tasks for a professional practitioner using an analytical approach. In fire safety engineering, smoke transport models are commonly used to predict the conditions caused by a fire. This is done despite the fact that knowledge of the errors and uncertainties associated with the models is lacking and there are insufficient means available to take them into account. The licentiate dissertation "Model Uncertainty in Fire Safety Engineering" is part of the project "Design Based on Calculated Risk", which is financed by The Swedish Fire Research Board (BRANDFORSK) and The Development Fund of the Swedish Construction Industry (SBUF). The objective of this part of the project was to evaluate the predictive capability of smoke transport models quantitatively, in terms of model error and uncertainty in the model error. The result is an adjustment model that can be used to take model error into account in future model predictions and thereby increase the predictive capability of the model. To exemplify the results of this study, model predictions of the smoke temperature and smoke layer height by the computer model CFAST 2.0 are evaluated by means of multi-scenario analysis. A single-scenario analysis is also carried out on smoke temperature predictions by the models FAST 3.1, FASTLite 1.0 and FPETool 3.2. The analysis shows that the predictive capability of the two-zone models can be questioned and that the model results should not be used uncritically, without consideration of the model error. In the analysis of the scenarios it ...
Model Uncertainty in Fire Safety Engineering
Lundin, Johan (Autor:in)
01.01.1999
Hochschulschrift
Elektronische Ressource
Englisch
Uncertainty analysis in fire safety engineering design
British Library Conference Proceedings | 1999
|Identifying and Addressing Uncertainty in Fire Safety Engineering
British Library Conference Proceedings | 1998
|British Library Conference Proceedings | 2007
|Katalog Medizin
Wiley | 2022
|