Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Modeling of frost heave and surface temperatures in roads
Temperature and moisture are very essential parameters when describing the condition of a pavement. In most cases, a high moisture content involves a decreased bearing capacity and, consequently, a shorter durability of the pavement. A frozen pavement has a greater bearing capacity than the corresponding construction in spring or late autumn. However, the freezing itself also implies strains to the pavement, as it heaves to different extent and in different directions in connection with the frost heave. The properties of an asphalt concrete pavement vary dramatically according to temperature. Cold asphalt concrete is hard, stiff and brittle, and therefore, cracks easily occur, whereas its bearing capacity decreases at high temperatures as softening progresses. Emphasizing the asphalt concrete, a numerical model has been developed for calculation of temperatures for summer condition, by means of recorded values for solar radiation, air temperature and wind velocity. Further, in order to also model temperatures and other conditions, occurring in the pavement during winter, a frost heave module has been developed and included in the model. The aim of this is to gain a better insight into the freezing process of a road structure. The model also provides an efficient tool for a better understanding of important factors related to frost depth and frost heave. A modified version of the model, is tested for falling weight deflectometer analysis. Input here, is a series of measured pavement surface temperatures and the output is calculated temperature distributions for the asphalt layer. Measuring equipment, developed at VTI, has been used to, in the field, automatically record frost heave and pavement temperature distribution. Furthermore, equipment for freezing tests in laboratory has also been developed. Experiences from such tests and field measurements have been used when developing the numerical model for freezing of pavements. At the laboratory freezing tests, a special interest has been devoted to water intake ...
Modeling of frost heave and surface temperatures in roads
Temperature and moisture are very essential parameters when describing the condition of a pavement. In most cases, a high moisture content involves a decreased bearing capacity and, consequently, a shorter durability of the pavement. A frozen pavement has a greater bearing capacity than the corresponding construction in spring or late autumn. However, the freezing itself also implies strains to the pavement, as it heaves to different extent and in different directions in connection with the frost heave. The properties of an asphalt concrete pavement vary dramatically according to temperature. Cold asphalt concrete is hard, stiff and brittle, and therefore, cracks easily occur, whereas its bearing capacity decreases at high temperatures as softening progresses. Emphasizing the asphalt concrete, a numerical model has been developed for calculation of temperatures for summer condition, by means of recorded values for solar radiation, air temperature and wind velocity. Further, in order to also model temperatures and other conditions, occurring in the pavement during winter, a frost heave module has been developed and included in the model. The aim of this is to gain a better insight into the freezing process of a road structure. The model also provides an efficient tool for a better understanding of important factors related to frost depth and frost heave. A modified version of the model, is tested for falling weight deflectometer analysis. Input here, is a series of measured pavement surface temperatures and the output is calculated temperature distributions for the asphalt layer. Measuring equipment, developed at VTI, has been used to, in the field, automatically record frost heave and pavement temperature distribution. Furthermore, equipment for freezing tests in laboratory has also been developed. Experiences from such tests and field measurements have been used when developing the numerical model for freezing of pavements. At the laboratory freezing tests, a special interest has been devoted to water intake ...
Modeling of frost heave and surface temperatures in roads
Hermansson, Åke (Autor:in)
01.01.2002
2002:13
Hochschulschrift
Elektronische Ressource
Englisch
DDC:
624
Modelling Frost Heave of Roads with a Geotextile Layer
British Library Conference Proceedings | 1996
|Engineering Index Backfile | 1965
|Frost heave theories and design measures against frost heave
British Library Conference Proceedings | 1993
|FROST HEAVE PREVENTION SYSTEM AND FROST HEAVE PREVENTION METHOD
Europäisches Patentamt | 2022
|Springer Verlag | 1976
|