Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
On the use of surplus electricity in district heating systems
Maintained balance between supply and demand is a fundamental prerequisite for proper operation of electric power grids. For this end, power systems rely on accessibility to various balancing technologies and solutions by which fluctuations in supply and demand can be promptly met. In this paper, balancing approaches in the case of surplus electricity supply, due to long-term, seasonal, or short-term causes, are discussed on the basis mainly of compiled experiences from the Swedish national power grid. In Sweden, a structural long-term electricity surplus was created in the 1980s when several new nuclear plants were commissioned and built. One of four explicit domestic power-to-heat solutions initiated to maximize the utilization of this surplus electricity, as export capacities were limited, was the introduction of large scale electric boilers and compressor heat pumps in district heating systems. In retrospective, this solution not only satisfied the primary objective by providing additional electricity demand to balance the power grid, but represents today – from an energy systems perspective – a contemporary example of increased system flexibility by the attainment of higher integration levels between power and heat sectors. As European power supply will be reshaped to include higher proportions of fluctuating supply technologies (e.g. wind and solar), causing occasional but recurring short-term electricity surpluses, the unique Swedish experiences may provide valuable input in the development of rational responses to future balancing challenges. The main conclusions from this study are that district heating systems can add additional balancing capabilities to power systems, if equipped with electrical heat supply technologies, hereby contributing to higher energy system flexibility. Consequently, district heating systems also have a discrete but key role in the continued integration of renewable intermittent power supply technologies in the future European energy system. ; The work presented in this paper is a result of the research activities of the Strategic Research Centre for 4th Generation District Heating (4DH), which has received funding from The Danish Council for Strategic Research.
On the use of surplus electricity in district heating systems
Maintained balance between supply and demand is a fundamental prerequisite for proper operation of electric power grids. For this end, power systems rely on accessibility to various balancing technologies and solutions by which fluctuations in supply and demand can be promptly met. In this paper, balancing approaches in the case of surplus electricity supply, due to long-term, seasonal, or short-term causes, are discussed on the basis mainly of compiled experiences from the Swedish national power grid. In Sweden, a structural long-term electricity surplus was created in the 1980s when several new nuclear plants were commissioned and built. One of four explicit domestic power-to-heat solutions initiated to maximize the utilization of this surplus electricity, as export capacities were limited, was the introduction of large scale electric boilers and compressor heat pumps in district heating systems. In retrospective, this solution not only satisfied the primary objective by providing additional electricity demand to balance the power grid, but represents today – from an energy systems perspective – a contemporary example of increased system flexibility by the attainment of higher integration levels between power and heat sectors. As European power supply will be reshaped to include higher proportions of fluctuating supply technologies (e.g. wind and solar), causing occasional but recurring short-term electricity surpluses, the unique Swedish experiences may provide valuable input in the development of rational responses to future balancing challenges. The main conclusions from this study are that district heating systems can add additional balancing capabilities to power systems, if equipped with electrical heat supply technologies, hereby contributing to higher energy system flexibility. Consequently, district heating systems also have a discrete but key role in the continued integration of renewable intermittent power supply technologies in the future European energy system. ; The work presented in this paper is a result of the research activities of the Strategic Research Centre for 4th Generation District Heating (4DH), which has received funding from The Danish Council for Strategic Research.
On the use of surplus electricity in district heating systems
Averfalk, Helge (Autor:in) / Ingvarsson, Paul (Autor:in) / Persson, Urban (Autor:in) / Werner, Sven (Autor:in)
01.01.2014
Aufsatz (Konferenz)
Elektronische Ressource
Englisch
Geothermal District Heating Systems
NTIS | 1982
|Engineering Index Backfile | 1946
|