Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Tension stiffening model for reinforced concrete beams ; Gelžbetoninių sijų tempimo sustandėjimo modelis
Modelling behaviour of cracked tensile concrete is a complicated issue. Due to bond with reinforcement, the cracked concrete between cracks carries a certain amount of tensile force normal to the cracked plane. Concrete adheres to rein-forcement bars and contributes to overall stiffness of the structure. The phe-nomenon, called tension-stiffening, has significant influence on the results of short-term deformational analysis. Assumption of a tension-stiffening law has great influence on numerical results of load – deflection behaviour of reinforced concrete members subjected to short – term loading. Under wrong assumption of this law, errors in calculated deflections, particularly for lightly members, may exceed 100 %. Most known tension-stiffening relationships relate average stresses to average strains. However, some experimental and theoretical investi-gations have shown that tension-stiffening may be affected by other parameters. The scientific supervisor of the thesis has proposed a tension-stiffening model depending on reinforcement ratio. This model has been developed using experi-mental data reported in the literature. Besides, concrete shrinkage effect was not taken into account. The main objective of this PhD dissertation is to propose a tension-stiffening law for bending RC members subjected to short-term loading with eliminated concrete shrinkage effect.
Tension stiffening model for reinforced concrete beams ; Gelžbetoninių sijų tempimo sustandėjimo modelis
Modelling behaviour of cracked tensile concrete is a complicated issue. Due to bond with reinforcement, the cracked concrete between cracks carries a certain amount of tensile force normal to the cracked plane. Concrete adheres to rein-forcement bars and contributes to overall stiffness of the structure. The phe-nomenon, called tension-stiffening, has significant influence on the results of short-term deformational analysis. Assumption of a tension-stiffening law has great influence on numerical results of load – deflection behaviour of reinforced concrete members subjected to short – term loading. Under wrong assumption of this law, errors in calculated deflections, particularly for lightly members, may exceed 100 %. Most known tension-stiffening relationships relate average stresses to average strains. However, some experimental and theoretical investi-gations have shown that tension-stiffening may be affected by other parameters. The scientific supervisor of the thesis has proposed a tension-stiffening model depending on reinforcement ratio. This model has been developed using experi-mental data reported in the literature. Besides, concrete shrinkage effect was not taken into account. The main objective of this PhD dissertation is to propose a tension-stiffening law for bending RC members subjected to short-term loading with eliminated concrete shrinkage effect.
Tension stiffening model for reinforced concrete beams ; Gelžbetoninių sijų tempimo sustandėjimo modelis
Sokolov, Aleksandr (Autor:in) / Kaklauskas, Gintaris
21.06.2010
Hochschulschrift
Elektronische Ressource
Lithuanian , Englisch
DDC:
690
BASE | 2010
|