Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Multi-objective optimisation framework for Blue-Green Infrastructure placement using detailed flood model
Designing city-scale Blue-Green Infrastructure (BGI) for flood risk management requires detailed and robust methods. This is due to the complex interaction of flow pathways and the need to assess cost-benefit trade-offs for various BGI options. This study aims to find a cost-effective BGI placement scheme by developing an improved approach called the Cost OptimisatioN Framework for Implementing blue-Green infrastructURE (CONFIGURE). The optimisation framework integrates a detailed hydrodynamic flood simulation model with a multi-objective optimisation algorithm (Non-dominated Sorting Genetic Algorithm II). The use of a high-resolution flood simulation model ensures the explicit representation of BGI and other land use features to simulate flow pathways and surface flood risk accurately, while the optimisation algorithm guarantees achieving the best cost-benefit trade-offs for given BGI options. The current study uses the advanced CityCAT hydrodynamic flood model to evaluate the efficiency of the optimisation framework and the impact of location and size of permeable interventions on the optimisation process and subsequent cost-benefit trade-offs. This is achieved by dividing permeable surface areas into intervention zones of varying size and quantity. Furthermore, rainstorm events with 100-year and 30-year return periods are analysed to identify any common optimal solutions for different rainfall intensities. Depending on the number of intervention locations, the automated framework reliably achieves optimal BGI implementation solutions in a fraction of the time required to find the best solutions by trialling all possible options. Designing and optimising interventions with smaller sizes but many permeable zones save a good fraction of investment. However, such a design scheme requires more computational time to find optimal options. Furthermore, the optimal spatial configuration of BGI varies with different rainstorm severities, suggesting a need for careful selection of the rainstorm return period. Based on ...
Multi-objective optimisation framework for Blue-Green Infrastructure placement using detailed flood model
Designing city-scale Blue-Green Infrastructure (BGI) for flood risk management requires detailed and robust methods. This is due to the complex interaction of flow pathways and the need to assess cost-benefit trade-offs for various BGI options. This study aims to find a cost-effective BGI placement scheme by developing an improved approach called the Cost OptimisatioN Framework for Implementing blue-Green infrastructURE (CONFIGURE). The optimisation framework integrates a detailed hydrodynamic flood simulation model with a multi-objective optimisation algorithm (Non-dominated Sorting Genetic Algorithm II). The use of a high-resolution flood simulation model ensures the explicit representation of BGI and other land use features to simulate flow pathways and surface flood risk accurately, while the optimisation algorithm guarantees achieving the best cost-benefit trade-offs for given BGI options. The current study uses the advanced CityCAT hydrodynamic flood model to evaluate the efficiency of the optimisation framework and the impact of location and size of permeable interventions on the optimisation process and subsequent cost-benefit trade-offs. This is achieved by dividing permeable surface areas into intervention zones of varying size and quantity. Furthermore, rainstorm events with 100-year and 30-year return periods are analysed to identify any common optimal solutions for different rainfall intensities. Depending on the number of intervention locations, the automated framework reliably achieves optimal BGI implementation solutions in a fraction of the time required to find the best solutions by trialling all possible options. Designing and optimising interventions with smaller sizes but many permeable zones save a good fraction of investment. However, such a design scheme requires more computational time to find optimal options. Furthermore, the optimal spatial configuration of BGI varies with different rainstorm severities, suggesting a need for careful selection of the rainstorm return period. Based on ...
Multi-objective optimisation framework for Blue-Green Infrastructure placement using detailed flood model
Ur Rehman, Asid (Autor:in) / Glenis, Vassilis (Autor:in) / Lewis, Elizabeth (Autor:in) / Kilsby, Chris (Autor:in)
01.07.2024
Ur Rehman , A , Glenis , V , Lewis , E & Kilsby , C 2024 , ' Multi-objective optimisation framework for Blue-Green Infrastructure placement using detailed flood model ' , Journal of Hydrology , vol. 638 , 131571 . https://doi.org/10.1016/j.jhydrol.2024.131571
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Blue-Green Infrastructure for Flood Resilience: Case Study of Indonesia
Springer Verlag | 2024
|Evaluating Flood Risk Reduction by Urban Blue-Green Infrastructure Using Insurance Data
British Library Online Contents | 2019
|British Library Online Contents | 2011
|