Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Pathways toward a carbon-neutral Swiss residential building stock
Current policies to reduce energy consumption and CO2 emissions associated with buildings focus on technological developments such as energy efficiency, renovation rates and renewable energies. While technological developments are effective at mitigating climate change, the omission of lifestyle changes such as lower floor area per capita and indoor temperatures as well as disruptive measures (e.g. replacement of highly energy-consuming buildings) leave untapped potential for further savings. A dynamic stock-driven model is presented that quantifies direct energy consumption and direct CO2 emissions associated with the use phase of Swiss residential buildings. Eleven scenarios involving technological developments, lifestyle changes and disruptive measures are evaluated against relevant goals (Paris Agreement, Energy Strategy 2050 and 2000-Watt Society). Disruptive measures are modelled with a new combined lifetime-leaching approach. The scenario analysis indicates that the main leverage points for energy savings reside in lifestyle changes, whereas emission reductions can be highly levered by technological developments. Reaching all the goals is possible, but requires ambitious strategies. This study provides a basis for expanding the portfolio of climate change mitigation strategies for the residential building sector, although further research is needed to understand social, cultural and economic aspects, and indirect (embodied) emissions. ; publishedVersion ; © 2020 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/
Pathways toward a carbon-neutral Swiss residential building stock
Current policies to reduce energy consumption and CO2 emissions associated with buildings focus on technological developments such as energy efficiency, renovation rates and renewable energies. While technological developments are effective at mitigating climate change, the omission of lifestyle changes such as lower floor area per capita and indoor temperatures as well as disruptive measures (e.g. replacement of highly energy-consuming buildings) leave untapped potential for further savings. A dynamic stock-driven model is presented that quantifies direct energy consumption and direct CO2 emissions associated with the use phase of Swiss residential buildings. Eleven scenarios involving technological developments, lifestyle changes and disruptive measures are evaluated against relevant goals (Paris Agreement, Energy Strategy 2050 and 2000-Watt Society). Disruptive measures are modelled with a new combined lifetime-leaching approach. The scenario analysis indicates that the main leverage points for energy savings reside in lifestyle changes, whereas emission reductions can be highly levered by technological developments. Reaching all the goals is possible, but requires ambitious strategies. This study provides a basis for expanding the portfolio of climate change mitigation strategies for the residential building sector, although further research is needed to understand social, cultural and economic aspects, and indirect (embodied) emissions. ; publishedVersion ; © 2020 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/
Pathways toward a carbon-neutral Swiss residential building stock
Roca-Puigròs, Marta (Autor:in) / Billy, Romain Guillaume (Autor:in) / Gerber, Andreas (Autor:in) / Wäger, Patrick (Autor:in) / Mueller, Daniel Beat (Autor:in)
01.01.2020
cristin:1831485
579-593 ; 1 ; Buildings and Cities
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
DDC:
690
Techno-economic potential of large-scale energy retrofit in the Swiss residential building stock
BASE | 2017
|Techno-economic potential of large-scale energy retrofit in the Swiss residential building stock
BASE | 2017
|BASE | 2023
|