Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Wind Energy Converters and Photovoltaics for Generation of Electricity after Natural Disasters
During recovery and reconstruction after a natural disaster, an autonomous power supply might be needed for an extended period of time. In this work, the feasibility of using small-scale wind power and battery storage for power supply is evaluated and compared with systems containing photovoltaics. The investment cost per yearly produced kWh and for an optimized energy system supplying small loads (2 or 20 kW peak) has been calculated for 32 sites, predominantly in Africa and the Middle East. The sites represent foreign activities of the Swedish Civil Contingencies Agency at the end of 2012. Since wind speed measurement series often have a lot of missing data, autoregressive moving average models were trained and used to generate hourly time series of wind speed. This methodology proved robust, even when data availability was very low or when measurements were only taken every third hour. The results of the simulations show that photovoltaic/battery systems outperform wind/battery systems at all evaluated sites. This can be explained by lower investment cost per yearly produced kWh and smoother daily/weekly power output over the year for the photovoltaic system. The proportion of wind power for optimized systems comprising wind, photovoltaics and battery bank is generally very low and the system cost is almost identical to the corresponding photovoltaic/battery systems. In conclusion, at lower latitudes and with little time for a proper wind measurement campaign, photovoltaics should be the primary candidate for replacing or complementing conventional diesel generators.
Wind Energy Converters and Photovoltaics for Generation of Electricity after Natural Disasters
During recovery and reconstruction after a natural disaster, an autonomous power supply might be needed for an extended period of time. In this work, the feasibility of using small-scale wind power and battery storage for power supply is evaluated and compared with systems containing photovoltaics. The investment cost per yearly produced kWh and for an optimized energy system supplying small loads (2 or 20 kW peak) has been calculated for 32 sites, predominantly in Africa and the Middle East. The sites represent foreign activities of the Swedish Civil Contingencies Agency at the end of 2012. Since wind speed measurement series often have a lot of missing data, autoregressive moving average models were trained and used to generate hourly time series of wind speed. This methodology proved robust, even when data availability was very low or when measurements were only taken every third hour. The results of the simulations show that photovoltaic/battery systems outperform wind/battery systems at all evaluated sites. This can be explained by lower investment cost per yearly produced kWh and smoother daily/weekly power output over the year for the photovoltaic system. The proportion of wind power for optimized systems comprising wind, photovoltaics and battery bank is generally very low and the system cost is almost identical to the corresponding photovoltaic/battery systems. In conclusion, at lower latitudes and with little time for a proper wind measurement campaign, photovoltaics should be the primary candidate for replacing or complementing conventional diesel generators.
Wind Energy Converters and Photovoltaics for Generation of Electricity after Natural Disasters
Olauson, Jon (Autor:in) / Goude, Anders (Autor:in) / Bergkvist, Mikael (Autor:in)
01.01.2015
ISI:000350500400002
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
DDC:
690
Online Contents | 1976
|Online Contents | 1976
|Maximizing Temporary Housing Safety after Natural Disasters
Online Contents | 2010
|Emergency shelters for humanitarian aid after natural disasters
UB Braunschweig | 2009
|Emergency Shelters for Humanitarian Aid after Natural Disasters
DataCite | 2008
|