Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
System Integration of Distributed Energy Resources
Besides their primary product – electricity – large central power stations supply socalled ancillary services that are necessary to maintain a secure and stable operation state of the electric power system. As the need for electricity from these units is being displaced by renewable energy sources, this project aims at investigating how the ancillary services can be provided by others in the system, e.g. small generation units, and flexible demand. The goal is a power system, where all units – small and large, producers and consumers – to the largest possible extent contribute to optimal system operation. It is therefore investigated in this project how ancillary services can be provided by alternatives to central power stations, and to what extent these can be integrated in the system by means of market-based methods. Particular emphasis is put on automatic solutions, which is particularly relevant for small units, including the ICT solutions that can facilitate the integration. Specifically, the international standard "IEC 61850-7-420 Communications systems for Distributed Energy Resources" is considered as a possible brick in the solution. This standard has undergone continuous development, and this project has actively contributed to its further development and improvements. Different types of integration methods are investigated in the project. Some are based on local measurement and control, e.g. by measuring the grid frequency, whereas others are based on direct remote control or market participation. In this connection it is considered how aggregation of many units into one logical entity, can make it possible for these units to provide ancillary services. As part of the investigations, operational, physical and thermodynamic models for e.g. micro-CHP and different types of flexible demand have been established. These models can be used for future investigations as well. A mixture of empirical and analytical methods have been used when defining the models and their parameters. The project concludes that ...
System Integration of Distributed Energy Resources
Besides their primary product – electricity – large central power stations supply socalled ancillary services that are necessary to maintain a secure and stable operation state of the electric power system. As the need for electricity from these units is being displaced by renewable energy sources, this project aims at investigating how the ancillary services can be provided by others in the system, e.g. small generation units, and flexible demand. The goal is a power system, where all units – small and large, producers and consumers – to the largest possible extent contribute to optimal system operation. It is therefore investigated in this project how ancillary services can be provided by alternatives to central power stations, and to what extent these can be integrated in the system by means of market-based methods. Particular emphasis is put on automatic solutions, which is particularly relevant for small units, including the ICT solutions that can facilitate the integration. Specifically, the international standard "IEC 61850-7-420 Communications systems for Distributed Energy Resources" is considered as a possible brick in the solution. This standard has undergone continuous development, and this project has actively contributed to its further development and improvements. Different types of integration methods are investigated in the project. Some are based on local measurement and control, e.g. by measuring the grid frequency, whereas others are based on direct remote control or market participation. In this connection it is considered how aggregation of many units into one logical entity, can make it possible for these units to provide ancillary services. As part of the investigations, operational, physical and thermodynamic models for e.g. micro-CHP and different types of flexible demand have been established. These models can be used for future investigations as well. A mixture of empirical and analytical methods have been used when defining the models and their parameters. The project concludes that ...
System Integration of Distributed Energy Resources
Nyeng, Preben (Autor:in)
01.01.2010
Nyeng , P 2010 , System Integration of Distributed Energy Resources . Technical University of Denmark, Department of Electrical Engineering .
Buch
Elektronische Ressource
Englisch
DDC:
690
Integration of distributed energy resources on distribution and transmission systems
BASE | 2019
|The enabling impact of digital technologies on distributed energy resources integration
American Institute of Physics | 2020
|Model for the integration of distributed energy resources in energy markets by an aggregator
BASE | 2017
|Model for the integration of distributed energy resources in energy markets by an aggregator
BASE | 2017
|