Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Evaluation and communication of pluvial flood risksin urban areas
The increase of pluvial flooding has long been discussed to be a most probableoutcome of climate change. This has raised the question of necessary conse-quences in the design of urban drainage systems in order to secure adequateflood protection and resilience. Due to the uncertainties in future trends ofheavy rainfall events, the awareness of remaining risks of extreme pluvialflooding needs to be roused at responsible decision makers and the public aswell leading to the implementation of pluvial flood risk management (PFRM)concepts. The state of two core elements of PFRM in Germany are describedhere: flood hazard and risk evaluation and risk communication. In 2016 theguideline DWA-M 119 has been published to establish city-based PFRM con-cepts in specification of the European Flood Risk Management Directive(EU 2007). As core elements, the guidelines recommend a site-specific analysisand evaluation of flood hazards and potentials of flood damages to create floodhazard and flood risk maps. In the long run, PFRM needs to be established asa joint community effort and a requirement for more flood resilience. The riskcommunication within the administration and in the public requires a com-prehensible characterization and classification of heavy rainfall to illustrateevent extremity. The concept of a rainstorm severity index (RSI) instead of sta-tistical rainfall parameters appears to be promising to gain a better perceptionby affected citizens and non-hydrology-experts as well. A methodical approachis described to specify and assign site-specific rainfall depths within the sever-ity index scheme RSI12.This article is categorized under: Engineering Water > Sustainable Engineering of Water Engineering Water > Planning Water Engineering Water > Methods
Evaluation and communication of pluvial flood risksin urban areas
The increase of pluvial flooding has long been discussed to be a most probableoutcome of climate change. This has raised the question of necessary conse-quences in the design of urban drainage systems in order to secure adequateflood protection and resilience. Due to the uncertainties in future trends ofheavy rainfall events, the awareness of remaining risks of extreme pluvialflooding needs to be roused at responsible decision makers and the public aswell leading to the implementation of pluvial flood risk management (PFRM)concepts. The state of two core elements of PFRM in Germany are describedhere: flood hazard and risk evaluation and risk communication. In 2016 theguideline DWA-M 119 has been published to establish city-based PFRM con-cepts in specification of the European Flood Risk Management Directive(EU 2007). As core elements, the guidelines recommend a site-specific analysisand evaluation of flood hazards and potentials of flood damages to create floodhazard and flood risk maps. In the long run, PFRM needs to be established asa joint community effort and a requirement for more flood resilience. The riskcommunication within the administration and in the public requires a com-prehensible characterization and classification of heavy rainfall to illustrateevent extremity. The concept of a rainstorm severity index (RSI) instead of sta-tistical rainfall parameters appears to be promising to gain a better perceptionby affected citizens and non-hydrology-experts as well. A methodical approachis described to specify and assign site-specific rainfall depths within the sever-ity index scheme RSI12.This article is categorized under: Engineering Water > Sustainable Engineering of Water Engineering Water > Planning Water Engineering Water > Methods
Evaluation and communication of pluvial flood risksin urban areas
Schmitt, Theo G. (Autor:in) / Scheid, Christian (Autor:in)
01.01.2019
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Integrated Decision Support System for Pluvial Flood-Resilient Spatial Planning in Urban Areas
DOAJ | 2021
|Recent advances and future challenges in urban pluvial flood modelling
Taylor & Francis Verlag | 2025
|An Integrated Approach for Urban Pluvial Flood Risk Assessment at Catchment Level
DOAJ | 2022
|Impacts of Rainfall Data Aggregation Time on Pluvial Flood Hazard in Urban Watersheds
DOAJ | 2022
|