Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Numerical study on active and passive trailing edge morphing applied to a multi-MW wind turbine section
A progressive increasing in turbine dimension has characterized the technological development in offshore wind energy utilization. This aspect reflects on the growing in blade length and weight. For very large turbines, the standard control systems may not be optimal to give the best performance and the best vibratory load damping, keeping the condition of maximum energy production. For this reason, some new solutions have been proposed in research. One of these is the possibility of morphs the blade surface in an active way (increasing the performance in low wind region) or passive (load reduction) way. In this work, we present a numerical study on the active and passive trailing edge morphing, applied to large wind turbines. In particular, the study focuses on the aerodynamic response of a midspan blade section, in terms of fluid structure interaction (FSI) and driven surface deformation. We test the active system in a simple start-up procedure and the passive system in a power production with turbulent wind conditions, that is, two situations in which we expect these systems could improve the performance. All the computations are carried out with a FSI code, which couples a 2D-CFD solver, a moving mesh solver (both implemented in OpenFOAM library) and a FEM solver. We evaluate all the boundary conditions to apply in the section problem by simulating the 5MW NREL wind turbine with the NREL CAE-tools developed for wind turbine simulation.
Numerical study on active and passive trailing edge morphing applied to a multi-MW wind turbine section
A progressive increasing in turbine dimension has characterized the technological development in offshore wind energy utilization. This aspect reflects on the growing in blade length and weight. For very large turbines, the standard control systems may not be optimal to give the best performance and the best vibratory load damping, keeping the condition of maximum energy production. For this reason, some new solutions have been proposed in research. One of these is the possibility of morphs the blade surface in an active way (increasing the performance in low wind region) or passive (load reduction) way. In this work, we present a numerical study on the active and passive trailing edge morphing, applied to large wind turbines. In particular, the study focuses on the aerodynamic response of a midspan blade section, in terms of fluid structure interaction (FSI) and driven surface deformation. We test the active system in a simple start-up procedure and the passive system in a power production with turbulent wind conditions, that is, two situations in which we expect these systems could improve the performance. All the computations are carried out with a FSI code, which couples a 2D-CFD solver, a moving mesh solver (both implemented in OpenFOAM library) and a FEM solver. We evaluate all the boundary conditions to apply in the section problem by simulating the 5MW NREL wind turbine with the NREL CAE-tools developed for wind turbine simulation.
Numerical study on active and passive trailing edge morphing applied to a multi-MW wind turbine section
CORSINI, Alessandro (Autor:in) / CASTORRINI, ALESSIO (Autor:in) / Boezi, M. (Autor:in) / RISPOLI, Franco (Autor:in) / Francesco Salvatore / Riccardo Broglia / Roberto Muscari / Corsini, Alessandro / Castorrini, Alessio / Boezi, M.
01.01.2015
Aufsatz (Konferenz)
Elektronische Ressource
Englisch
DDC:
690
A Study of Morphing Trailing Edge Flaps Applied on Offshore Wind Turbine
BASE | 2017
|American Institute of Physics | 2024
|Active load control for wind turbine blades using trailing edge flap
Online Contents | 2013
|DOAJ | 2018
|An advanced structural trailing edge modelling method for wind turbine blades
British Library Online Contents | 2017
|