Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Performance of an Ocean Energy Conversion System with DFIG Sensorless Control
The 2009/28/EC Directive requires Member States of the European Union to adopt a National Action Plan for Renewable Energy. In this context, the Basque Energy Board, EVE, is committed to research activities such as the Mutriku Oscillating Water Column plant, OWC. This is an experimental facility whose concept consists of a turbine located in a pneumatic energy collection chamber and a doubly fed induction generator that converts energy extracted by the turbine into a form that can be returned to the network. The turbo-generator control requires a precise knowledge of system parameters and of the rotor angular velocity in particular. Thus, to remove the rotor speed sensor implies a simplification of the hardware that is always convenient in rough working conditions. In this particular case, a Luenberger based observer is considered and the effectiveness of the proposed control is shown by numerical simulations. Comparing these results with those obtained using a traditional speed sensor, it is shown that the proposed solution provides better performance since it increases power extraction in the sense that it allows a more reliable and robust performance of the plant, which is even more relevant in a hostile environment as the ocean. ; This work was supported in part by University of the Basque Country (UPV/EHU) through Research Project GIU11/02 and the Research and Training Unit UFI11/07, by the Ministry of Science and Innovation (MICINN) with Research Project ENE2010-18345, and by the EU FP7 EFDA under the task WP09-DIA-02-01 WP III-2-c. The authors would also like to thank the collaboration of the Basque Energy Board (EVE) through Agreement UPV/EHUEVE23/6/2011 and the Spanish National Fusion Laboratory (CIEMAT) UPV/EHUCIE-MAT08/190.
Performance of an Ocean Energy Conversion System with DFIG Sensorless Control
The 2009/28/EC Directive requires Member States of the European Union to adopt a National Action Plan for Renewable Energy. In this context, the Basque Energy Board, EVE, is committed to research activities such as the Mutriku Oscillating Water Column plant, OWC. This is an experimental facility whose concept consists of a turbine located in a pneumatic energy collection chamber and a doubly fed induction generator that converts energy extracted by the turbine into a form that can be returned to the network. The turbo-generator control requires a precise knowledge of system parameters and of the rotor angular velocity in particular. Thus, to remove the rotor speed sensor implies a simplification of the hardware that is always convenient in rough working conditions. In this particular case, a Luenberger based observer is considered and the effectiveness of the proposed control is shown by numerical simulations. Comparing these results with those obtained using a traditional speed sensor, it is shown that the proposed solution provides better performance since it increases power extraction in the sense that it allows a more reliable and robust performance of the plant, which is even more relevant in a hostile environment as the ocean. ; This work was supported in part by University of the Basque Country (UPV/EHU) through Research Project GIU11/02 and the Research and Training Unit UFI11/07, by the Ministry of Science and Innovation (MICINN) with Research Project ENE2010-18345, and by the EU FP7 EFDA under the task WP09-DIA-02-01 WP III-2-c. The authors would also like to thank the collaboration of the Basque Energy Board (EVE) through Agreement UPV/EHUEVE23/6/2011 and the Spanish National Fusion Laboratory (CIEMAT) UPV/EHUCIE-MAT08/190.
Performance of an Ocean Energy Conversion System with DFIG Sensorless Control
Garrido Hernández, Izaskun (Autor:in) / Garrido Hernández, Aitor Josu (Autor:in) / Alberdi Goitia, Mikel (Autor:in) / Amundarain Ormaza, Modesto (Autor:in) / Barambones Caramazana, Oscar (Autor:in)
01.05.2013
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
DDC:
690
DOAJ | 2020
|Two Level Versus Matrix Converters Performance in Wind Energy Conversion Systems Employing DFIG
Springer Verlag | 2017
|AN ADAPTIVE SENSORLESS CONTROL FOR MAXIMUM POWER POINT TRACKING IN WIND ENERGY CONVERSION SYSTEM
BASE | 2014
|