Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Impact of building density on natural ventilation potential and cooling energy saving across Chinese climate zones
Natural ventilation is an energy-efficient approach to reduce the need for mechanical ventilation and air conditioning in buildings. However, traditionally weather data for building energy simulation are obtained from rural areas, which do not reflect the urban micrometeorological conditions. This study combines the Surface Urban Energy and Water Balance Scheme (SUEWS) and EnergyPlus to predict natural ventilation potential (NVP) and cooling energy saving in three idealised urban neighbourhoods with different urban densities in five Chinese cities of different climate zones. SUEWS downscales the meteorological inputs required by EnergyPlus, including air temperature, relative humidity, and wind speed profiles. The findings indicate that NVP and cooling energy saving differences between urban and rural areas are climate- and season-dependent. During summer, the urban-rural differences in natural ventilation hours are −43%–10% (cf. rural) across all climates, while in spring/autumn, they range from −7% to 36%. The study also suggests that single-sided ventilation can be as effective as cross ventilation for buildings in dense urban areas. Our findings highlight the importance of considering local or neighbourhood-scale climate when evaluating NVP. We demonstrate a method to enhance NVP prediction accuracy in urban regions using EnergyPlus, which can contribute to achieving low-carbon building design.
Impact of building density on natural ventilation potential and cooling energy saving across Chinese climate zones
Natural ventilation is an energy-efficient approach to reduce the need for mechanical ventilation and air conditioning in buildings. However, traditionally weather data for building energy simulation are obtained from rural areas, which do not reflect the urban micrometeorological conditions. This study combines the Surface Urban Energy and Water Balance Scheme (SUEWS) and EnergyPlus to predict natural ventilation potential (NVP) and cooling energy saving in three idealised urban neighbourhoods with different urban densities in five Chinese cities of different climate zones. SUEWS downscales the meteorological inputs required by EnergyPlus, including air temperature, relative humidity, and wind speed profiles. The findings indicate that NVP and cooling energy saving differences between urban and rural areas are climate- and season-dependent. During summer, the urban-rural differences in natural ventilation hours are −43%–10% (cf. rural) across all climates, while in spring/autumn, they range from −7% to 36%. The study also suggests that single-sided ventilation can be as effective as cross ventilation for buildings in dense urban areas. Our findings highlight the importance of considering local or neighbourhood-scale climate when evaluating NVP. We demonstrate a method to enhance NVP prediction accuracy in urban regions using EnergyPlus, which can contribute to achieving low-carbon building design.
Impact of building density on natural ventilation potential and cooling energy saving across Chinese climate zones
Xie, Xiaoxiong (Autor:in) / Luo, Zhiwen (Autor:in) / Grimmond, Sue (Autor:in) / Sun, Ting (Autor:in)
24.07.2023
Building and Environment , Article 110621. (2023) (In press).
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
DDC:
690
Energy-saving potential of a radiant cooling system in different climate zones of India
Taylor & Francis Verlag | 2018
|