Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Effect of Maximum Aggregate Size on the Strength of Normal and High Strength Concrete
Aggregates form 60% to 75% of concrete volume and thus influence its mechanical properties. The strength of (normal or high-strength) concrete is affected by the maximum size of a well-graded coarse aggregate. Concrete mixes containing larger coarse aggregate particles need less mixing water than those containing smaller coarse aggregates, In other words, small aggregate particles have more surface area than a large aggregate particle. In this research, about twenty-two mixtures were covered to study the effect of the MSCA, on compressive strength of (normal strength concrete) and Sixteen mixtures to study the effect of the maximum size of coarse aggregate on compressive strength for (high strength concrete). The concrete mixture is completely redesigned according to the maximum size of coarse aggregate needs and maintaining uniform workability for all sizes of coarse aggregate. The American design method was adopted ACI 211.1, for normal concrete. ACI 211-4R, the design method was adopted for high strength concrete. And use the MSCA with dimensions (9.5, 12.5, 19, 25, 37.5, and 50) mm for normal strength concrete and the MSCA (9.5, 12.5, 19, and 25) mm for high strength concrete. The slump was fixed (75-100) mm for normal strength concrete. Slump is fixed to (25-50) mm for high strength concrete before added Superplasticizer high range water reducer (HRWR). With Fineness Modulus (F.M) fixed to 2.8 for both normal concrete and high-strength concrete. According to the results of the tests, the compressive strength increases with the increase in the MSCA, of the normal concrete and also high – strength concrete. And the effect of the MSCA, on the compressive strength of normal concrete, is higher than that of high-strength concrete.
Effect of Maximum Aggregate Size on the Strength of Normal and High Strength Concrete
Aggregates form 60% to 75% of concrete volume and thus influence its mechanical properties. The strength of (normal or high-strength) concrete is affected by the maximum size of a well-graded coarse aggregate. Concrete mixes containing larger coarse aggregate particles need less mixing water than those containing smaller coarse aggregates, In other words, small aggregate particles have more surface area than a large aggregate particle. In this research, about twenty-two mixtures were covered to study the effect of the MSCA, on compressive strength of (normal strength concrete) and Sixteen mixtures to study the effect of the maximum size of coarse aggregate on compressive strength for (high strength concrete). The concrete mixture is completely redesigned according to the maximum size of coarse aggregate needs and maintaining uniform workability for all sizes of coarse aggregate. The American design method was adopted ACI 211.1, for normal concrete. ACI 211-4R, the design method was adopted for high strength concrete. And use the MSCA with dimensions (9.5, 12.5, 19, 25, 37.5, and 50) mm for normal strength concrete and the MSCA (9.5, 12.5, 19, and 25) mm for high strength concrete. The slump was fixed (75-100) mm for normal strength concrete. Slump is fixed to (25-50) mm for high strength concrete before added Superplasticizer high range water reducer (HRWR). With Fineness Modulus (F.M) fixed to 2.8 for both normal concrete and high-strength concrete. According to the results of the tests, the compressive strength increases with the increase in the MSCA, of the normal concrete and also high – strength concrete. And the effect of the MSCA, on the compressive strength of normal concrete, is higher than that of high-strength concrete.
Effect of Maximum Aggregate Size on the Strength of Normal and High Strength Concrete
Mohammed, Gaith Abdulhamza (Autor:in) / Al-Mashhadi, Samer Abdul Amir (Autor:in)
01.06.2020
doi:10.28991/cej-2020-03091537
Civil Engineering Journal; Vol 6, No 6 (2020): June; 1155-1165 ; 2476-3055 ; 2676-6957
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
DDC:
690
Maximum size of aggregate affects strength of concrete
Engineering Index Backfile | 1963
|Effect of Maximum Aggregate Size on the Bond Strength of Reinforcements in Concrete
BASE | 2018
|Size Influence of Specimens and Maximum Aggregate on Dam Concrete: Compressive Strength
Online Contents | 2009
|Size Influence of Specimens and Maximum Aggregate on Dam Concrete: Compressive Strength
British Library Online Contents | 2009
|Specimen and Aggregate Size Effect on Concrete Compressive Strength
Online Contents | 2000
|