Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Energy-efficient coordinated electric truck-drone hybrid delivery service planning
Recent works have shown that a coordinated delivery strategy in which a drone collaborates with a truck using it as a moving depot is quite effective in improving the performance and energy efficiency of the delivery process. As most of these works come from the research community of logistics and transportation, they are instead focused on the optimality of the algorithms, and neglect two critical issues: (1) they consider only a planar version of the problem ignoring the geographic information along the delivery route, and (2) they use a simplified battery model, truck, and drone power consumption model as they are mostly focused on optimizing delivery time alone rather than energy efficiency.In this work, we propose a greedy heuristic algorithm to deter-mine the most energy-efficient sequence of deliveries in which a drone and an EV truck collaborate in the delivery process, while accounting for the two above aspects. In our scenario, a drone delivers packages starting from the truck and returns to the truck after the delivery, while the truck continues on its route and possibly delivers other packages. Results show that, by carefully using the drone’s energy along the truck delivery route, we can achieve 43-69% saving of the truck battery energy on average over a set of different delivery sets and different drone battery sizes. We also compared two "common-sense" heuristics, concerning which we saved up to 42%.
Energy-efficient coordinated electric truck-drone hybrid delivery service planning
Recent works have shown that a coordinated delivery strategy in which a drone collaborates with a truck using it as a moving depot is quite effective in improving the performance and energy efficiency of the delivery process. As most of these works come from the research community of logistics and transportation, they are instead focused on the optimality of the algorithms, and neglect two critical issues: (1) they consider only a planar version of the problem ignoring the geographic information along the delivery route, and (2) they use a simplified battery model, truck, and drone power consumption model as they are mostly focused on optimizing delivery time alone rather than energy efficiency.In this work, we propose a greedy heuristic algorithm to deter-mine the most energy-efficient sequence of deliveries in which a drone and an EV truck collaborate in the delivery process, while accounting for the two above aspects. In our scenario, a drone delivers packages starting from the truck and returns to the truck after the delivery, while the truck continues on its route and possibly delivers other packages. Results show that, by carefully using the drone’s energy along the truck delivery route, we can achieve 43-69% saving of the truck battery energy on average over a set of different delivery sets and different drone battery sizes. We also compared two "common-sense" heuristics, concerning which we saved up to 42%.
Energy-efficient coordinated electric truck-drone hybrid delivery service planning
Baek Donkyu (Autor:in) / Yukai Chen (Autor:in) / Naehyuck Chang (Autor:in) / Enrico Macii (Autor:in) / Massimo Poncino (Autor:in) / Donkyu, Baek / Chen, Yukai / Chang, Naehyuck / Macii, Enrico / Poncino, Massimo
01.01.2020
Aufsatz (Konferenz)
Elektronische Ressource
Englisch
DDC:
690
Multi-Criteria Coordinated Electric Vehicle-Drone Hybrid Delivery Service Planning
BASE | 2023
|Online Delivery Problem for Hybrid Truck–Drone System with Independent and Truck-Carried Drones
DOAJ | 2023
|Truck-based drone delivery system: An economic and environmental assessment
BASE | 2022
|